Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

4 1. Determinants, First Minors, and Cofactors


=(−1)

n−i
Mij(e


1
···e


j− 1
)(e


j
···e


n− 1
)ej

=(−1)

n−i
Mij(e 1 ···ej− 1 )(ej+1···en)ej

=(−1)

i+j
Mij(e 1 e 2 ···en). (1.3.10)

Now,ejcan be regarded as a particular case ofxias defined in (1.2.1):


ej=

n

k=

aikek,

where


aik=δjk.

Hence, replacingxibyejin (1.2.3),


x 1 ···xi− 1 ejxi+1···xn=Aij(e 1 e 2 ···en), (1.3.11)

where


Aij=


σna 1 k
1
a 2 k
2
···aik
i
···ank
n

,

where


aiki=0 ki=j

=1 ki=j.

Referring to the definition of a determinant in (1.2.4), it is seen thatAijis


the determinant obtained from|aij|nby replacing rowiby the row


[0... 010 ...0],

where the element 1 is in columnj.Aijis known as the cofactor of the


elementaijinAn.


Comparing (1.3.10) and (1.3.11),

Aij=(−1)

i+j
Mij. (1.3.12)

Minors and cofactors should be writtenM


(n)
ij
andA

(n)
ij
but the parameter

ncan be omitted where there is no risk of confusion.


Returning to (1.2.1) and applying (1.3.11),

x 1 x 2 ···xn=x 1 ···xi− 1

(

n

k=

aikek

)

xi+1···xn

=

n

k=

aik(x 1 ···xi− 1 ekxi+1···xn)

=

[

n

k=

aikAik

]

e 1 e 2 ···en. (1.3.13)
Free download pdf