Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
5.2 The Generalized Cusick Identities 181

s 2 =ai+1,j+φiψj,

s 3 =ai+1,j+1.

The lemma follows. 


Let

A


2 n
=|a


ij
| 2 n,

Pf


n=

(

A


2 n

)

1 / 2

. (5.2.15)


Lemma 5.3.


2 n− 1

i=1

(−1)

i+1
Pf

(n)
i
x

2 n−i− 1
=Pf


n− 1

.

Proof. Denote the sum byFn. Then, referring to (5.2.13) and Section 3.7


on bordered determinants,


F

2
n=

2 n− 1

i=1

2 n− 1

j=1

(−1)

i+j
Pf

(n)
i
Pf

(n)
j
x

4 n−i−j− 2

=

2 n− 1

i=1

2 n− 1

j=1

A

(2n−1)
ij
x

4 n−i−j− 2

=−

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

a 11 a 12 ··· a 1 , 2 n− 1 x

2 n− 2

a 21 a 22 ··· a 2 , 2 n− 1 x

2 n− 3

.........................................

a 2 n− 1 , 1 a 2 n− 1 , 2 ··· a 2 n− 1 , 2 n− 1 1

x

2 n− 2
x

2 n− 3
··· 1 •

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

2 n

. (5.2.16)

(It is not necessary to putaii= 0, etc., in order to prove the lemma.)


Eliminate thex’s from the last column and row by means of the row and

column operations


R


i=Ri−xRi+1,^1 ≤i≤^2 n−^2 ,

C


j=Cj−xCj+1,^1 ≤j≤^2 n−^2. (5.2.17)

The result is


F

2
n

=−

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

a

11
a

12
··· a

1 , 2 n− 1


a

21
a

22
··· a

2 , 2 n− 1


.....................................

a


2 n− 1 , 1
a


2 n− 1 , 2
··· a


2 n− 1 , 2 n− 1

1

• • ··· 1 •

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

2 n

=+|a


ij|^2 n−^2

=A


2 n− 2.

The lemma follows by taking the square root of each side. 

Free download pdf