Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
5.3 The Matsuno Identities 191

Hence, if


aij=

{

uij,j=i

x−

xi
1 −x
2
i

,j=i,

then


An=|aij|n=x

n

. (5.3.13)


Exercises


1.LetAndenote the determinant defined in (5.3.9) and let

Bn=|bij|n,

where

bij=

{

2
xi−xj

,j=i

x+

1
xi

,j=i,

where, as forAn(x), thexidenote the zeros of the Laguerre polynomial.

Prove that

Bn(x−1)=2

n
An

(

x

2

)

and, hence, prove that

Bn(x)=(x+1)

n
.

2.Let

A

(p)
n
=|a

(p)
ij
|n,

where

a

(p)
ij

=






u

p
ij
,j=i

x−

∑n

r=1
r=i

u

p
ir,j=i,

uij=

1

xi−xj

=−uji

and thexiare the zeros of the Hermite polynomialHn(x). Prove that

A

(2)
n

=

n

r=1

[x−(r−1)],

A

(4)
n =

n

r=1

[

x−

1

6

(r

2
−1)

]

.
Free download pdf