5.4 The Cofactors of the Matsuno Determinant 193(
E
ii
+∂
∂xi)
E
pru,qsv
=eipru,iqsv
, (5.4.4)etc.
5.4.2 First Cofactors.....................
Whenfr+gr= 0, the double-sum identities (C) and (D) in Section 3.4
become
n
∑r=1n
∑s=1†
(fr+gs)arsArs
=0, (C†
)n
∑r=1n
∑s=1†
(fr+gs)arsAis
Arj
=(fi+gj)Aij. (D
†
)Applying (C
†
)toEwithfr=−gr=c
m
r
,
n
∑r=1n
∑s=1†(
cm
r
−cm
scr−cs)
E
rs
=0. (5.4.5)Puttingm=1, 2 ,3 yields the following particular cases:
m=1:
∑
r∑
s†
E
rs
=0,which is equivalent to
∑r∑
sE
rs
=∑
rE
rr
; (5.4.6)m=2:
∑
r∑
s†
(cr+cs)E
rs
=0,which is equivalent to
∑r∑
s(cr+cs)Ers
=2∑
rcrErr
; (5.4.7)m=3:
∑
r∑
s†
(c2
r+crcs+c2
s)Ers
=0,which is equivalent to
∑r∑
s(c2
r
+crcs+c2
s)E
rs
=3∑
rc2
rE
rr. (5.4.8)
Applying (D
†
)toE, again withfr=−gr=cm
r,∑
r∑
s†(
cm
r −cm
scr−cs)
E
is
Erj
=(cm
i
−cm
j)E
ij. (5.4.9)
Puttingm=1,2 yields the following particular cases: