5.4 The Cofactors of the Matsuno Determinant 197=
∑
iE
ii∑
r,s(cr+cs)Ers=2
∑
iE
ii∑
rcrErr
, (5.4.30)G=2
∑
i,j,rcrEir
Erj. (5.4.31)
Modify (5.4.10) withj=iby making the changesi↔rands→j. This
gives
G=2
∑
rcr∑
iE
ir
Eri. (5.4.32)
Hence,
∑
i,j(c2
i−c2
j)Eij
=2∑
i,rcr∣
∣
∣
∣
E
ii
EirE
ri
Err∣
∣
∣
∣
=2
∑
i,rE
ir,ir
,which is equivalent to (5.4.22).
To prove (5.4.23) multiply (5.4.10) by (ci−cj), sum overiandj, changethe dummy variables as indicated, and refer to (5.4.6):
∑i,j(ci−cj)2
Eij
=H−J, (5.4.33)where
H=
∑
i,j(ci−cj)∑
r,sE
is
Erj=
∑
r,jE
rj
∑
i,s
(s→j)ciEis
−
∑
i,sE
is
∑
r,j
(r→i)cjErj
=
∑
rE
rr∑
i,j(ci−cj)Eij
, (5.4.34)J=
∑
i,j(ci−cj)∑
rE
ir
Erj. (5.4.35)
Hence, referring to (5.4.20) with suitable changes in the dummy variables,
∑
i,j(ci−cj)2
Eij
=∑
i,j,r(ci−cj)∣
∣
∣
∣
E
ij
E
irE
rj
E
rr∣
∣
∣
∣
=
∑
i,j,r(ci−cj)Eir,jr