200 5. Further Determinant Theory
=U
2
−V2
+∑
r∂S
∂xr, (5.4.42)
where
S=
∑
i,jcicjEij. (5.4.43)
This function is identical to the left-hand side of (5.4.26). Let
T=
∑
i,j,r,s(ci+cj)(cr+cs)Eis
Erj. (5.4.44)
Then, applying (5.4.6),
T=
∑
i,sciEis∑
j,rcrErj
+∑
j,rE
rj∑
i,scicsEis+
∑
i,sE
is∑
j,rcjcrErj
+∑
j,rcjErj∑
i,scsEis=(U+V)
2
+2S∑
r,sE
rs
+(U−V)2=2(U
2
+V2
)+2S∑
rE
rr. (5.4.45)
EliminatingVfrom (5.4.42),
T+2R=4U
2
+2∑
r(
E
rr
+∂
∂xr)
S. (5.4.46)
To obtain a formula forQ, multiply (5.4.11) by (ci+cj), sum overiandj, and apply (5.4.13) with the modifications (i, j)↔(r, s) on the left and
(i, r)→(r, s) on the right:
Q=
∑
i,j,r,s(ci+cj)(cr+cs)Eis
Erj
− 2∑
i,j,rcr(ci+cj)Eir
Erj=T− 2
∑
rcr∑
i,j(ci+cj)Eir
Erj=T− 4
∑
r,scrcsErs
Esr. (5.4.47)
EliminatingTfrom (5.4.46) and applying (5.4.26) and the fourth and sixth
lines of (5.4.4),
Q+2R=4
∑
r,scrcs(Err
Ess
−Esr
Ers
)+2
∑
r(
E
rr
+∂
∂xr)
[
∑
sc2
sE
ss
−1
3
∑
s,t,uE
stu,stu