5.6 Distinct Matrices with Nondistinct Determinants 215|α 2 |=−∣ ∣ ∣ ∣ ∣ ∣
12 x1 xx2φ 0 φ 1 φ 2∣ ∣ ∣ ∣ ∣ ∣
=−
∣ ∣ ∣ ∣ ∣ ∣
1 x1 φ 0 φ 1xφ 1 φ 2∣ ∣ ∣ ∣ ∣ ∣
(symmetric); (5.6.9)(n, r)=(4,3):
|φ 3 |=−∣ ∣ ∣ ∣ ∣ ∣ ∣
1 − 2 x1 −xx
21 α 0 α 1 α 2−xα 1 α 2 α 3∣ ∣ ∣ ∣ ∣ ∣ ∣
=−
∣ ∣ ∣ ∣ ∣ ∣ ∣
1 − 3 x1 − 2 x 3 x
21 −xx2
−x3α 0 α 1 α 2 α 3∣ ∣ ∣ ∣ ∣ ∣ ∣
,
|α 3 |=−∣ ∣ ∣ ∣ ∣ ∣ ∣
12 x1 xx21 φ 0 φ 1 φ 2xφ 1 φ 2 φ 3∣ ∣ ∣ ∣ ∣ ∣ ∣
=−
∣ ∣ ∣ ∣ ∣ ∣ ∣
13 x12 x 3 x21 xx2
x3φ 0 φ 1 φ 2 φ 3∣ ∣ ∣ ∣ ∣ ∣ ∣
; (5.6.10)
(n, r)=(3,3):
∣
∣
∣
∣
φ 1 φ 2φ 2 φ 3∣
∣
∣
∣
=
∣ ∣ ∣ ∣ ∣ ∣
1 −xx
2α 0 α 1 α 2α 1 α 2 α 3∣ ∣ ∣ ∣ ∣ ∣
,
∣
∣
∣
∣
α 1 α 2α 2 α 3∣
∣
∣
∣
=
∣ ∣ ∣ ∣ ∣ ∣
1 xx2φ 0 φ 1 φ 2φ 1 φ 2 φ 3∣ ∣ ∣ ∣ ∣ ∣
; (5.6.11)
(n, r)=(4,4):
∣
∣
∣
∣
φ 2 φ 3φ 3 φ 4∣
∣
∣
∣
=−
∣ ∣ ∣ ∣ ∣ ∣ ∣
1 − 2 x 3 x
21 −xx
2
−x
3α 0 α 1 α 2 α 3α 1 α 2 α 3 α 4∣ ∣ ∣ ∣ ∣ ∣ ∣
=
∣ ∣ ∣ ∣ ∣ ∣ ∣
1 −xx
21 α 0 α 1 α 2−xα 1 α 2 α 3x
2
α 2 α 3 α 4∣ ∣ ∣ ∣ ∣ ∣ ∣
,
∣
∣
∣
∣
α 2 α 3α 3 α 4∣
∣
∣
∣
=−
∣ ∣ ∣ ∣ ∣ ∣ ∣
12 x 3 x21 xx2
x3φ 0 φ 1 φ 2 φ 3φ 1 φ 2 φ 3 φ 4∣ ∣ ∣ ∣ ∣ ∣ ∣
=
∣ ∣ ∣ ∣ ∣ ∣ ∣
1 xx21 φ 0 φ 1 φ 2xφ 1 φ 2 φ 3x2
φ 2 φ 3 φ 4∣ ∣ ∣ ∣ ∣ ∣ ∣
(5.6.12)
The coaxial nature of the determinantsB
nr
s
is illustrated for the case(n, r)=(6,6) as follows:
∣
∣
∣
∣
φ 4 φ 5φ 5 φ 6∣
∣
∣
∣
=
each of the three determinants of order 6enclosed within overlapping dotted framesin the following display: