Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
5.6 Distinct Matrices with Nondistinct Determinants 217





φ 1 (x+y) φ 2 (x+y)

φ 2 (x+y) φ 3 (x+y)





=

∣ ∣ ∣ ∣ ∣ ∣

1 −xx

2

φ 0 (y) φ 1 (y) φ 2 (y)

φ 1 (y) φ 2 (y) φ 3 (y)

∣ ∣ ∣ ∣ ∣ ∣

,

=

∣ ∣ ∣ ∣ ∣ ∣

1 −yy

2

φ 0 (x) φ 1 (x) φ 2 (x)

φ 1 (x) φ 2 (x) φ 3 (x)

∣ ∣ ∣ ∣ ∣ ∣

(5.6.19)





φ 2 (x+y) φ 3 (x+y)

φ 3 (x+y) φ 4 (x+y)





=

∣ ∣ ∣ ∣ ∣ ∣ ∣

1 −xx

2

1 φ 0 (y) φ 1 (y) φ 2 (y)

−xφ 1 (y) φ 2 (y) φ 3 (y)

x

2
φ 2 (y) φ 3 (y) φ 4 (y)

∣ ∣ ∣ ∣ ∣ ∣ ∣ =

∣ ∣ ∣ ∣ ∣ ∣ ∣

1 − 2 x 3 x

2

1 −xx

2
−x

3

φ 0 (y) φ 1 (y) φ 2 (y) φ 3 (y)

φ 1 (y) φ 2 (y) φ 3 (y) φ 4 (y)

∣ ∣ ∣ ∣ ∣ ∣ ∣

.(5.6.20)

Do these identities possess duals?


5.6.3 Determinants with Stirling Elements


Matrices sn(x) andSn(x) whose elements contain Stirling numbers of


the first and second kinds, sij and Sij, respectively, are defined in


Appendix A.1.


Let the matrix obtained by rotating Sn(x) through 90


in the

anticlockwise direction be denotes by




Sn(x). For example,



S 5 (x)=






1

110 x

16 x 25 x

2

13 x 7 x

2
15 x

3

1 xx

2
x

3
x

4






.

Define anothernth-order triangular matrixBn(x) as follows:


Bn(x)=[

←→

bijx

i−j
],n≥ 2 , 1 ≤i, j≤n,

where


bij=

1

(j−1)!

j− 1

r=0

(−1)

r

(

j− 1

r

)

(n−r−1)

i− 1
,i≥j. (5.6.21)

These numbers are integers and satisfy the recurrence relation


bij=bi− 1 ,j− 1 +(n−j)bi−j,j,

where


b 11 =1. (5.6.22)
Free download pdf