5.8 Some Applications of Algebraic Computing 229
∣ ∣ ∣ ∣ ∣ ∣
H 2 H 4 H 5
H 1 H 3 H 4
1 H 2 H 3
∣ ∣ ∣ ∣ ∣ ∣
=
∣ ∣ ∣ ∣ ∣ ∣
h 2 h 4 h 5
h 1 h 3 h 4
1 h 2 h 3
∣ ∣ ∣ ∣ ∣ ∣
,
∣
∣
∣
∣
H 3 H 5
H 1 H 3
∣
∣
∣
∣
=
∣ ∣ ∣ ∣ ∣ ∣ ∣
h 1 h 3 h 4 h 5
1 h 2 h 3 h 4
h 1 h 2 h 3
1 h 1
∣ ∣ ∣ ∣ ∣ ∣ ∣
. (5.8.2)
5.8.3 Hankel Determinants with Hankel Elements....
Let
An=|φr+m|n, 0 ≤m≤ 2 n− 2 , (5.8.3)
which is an Hankelian (or a Turanian).
Let
Br=A 2
=
∣
∣
∣
∣
φr φr+1
φr+1 φr+2
∣
∣
∣
∣
. (5.8.4)
ThenBr,Br+1, andBr+2are each Hankelians of order 2 and are each
minors ofA 3 :
Br=A
(3)
33 ,
Br+1=A
(3)
31
=A
(3)
13
,
Br+2=A
(3)
11. (5.8.5)
Hence, applying the Jacobi identity (Section 3.6),
∣
∣
∣
∣
Br+2 Br+1
Br+1 Br
∣
∣
∣
∣
=
∣
∣
∣
∣
A
(3)
11 A
(3)
13
A
(3)
31 A
(3)
33
∣
∣
∣
∣
=A 3 A
(3)
13 , 13
=φ 2 A 3. (5.8.6)
Now redefineBr. LetBr=A 3. Then,Br,Br+1,...,Br+4are each second
minors ofA 5 :
Br=A
(5)
45 , 45
,
Br+1=−A
(5)
15 , 45
=−A
(5)
45 , 15
,
Br+2=A
(5)
12 , 45 =A
(5)
15 , 15 =A
(5)
45 , 12 ,
Br+3=−A
(5)
12 , 15
=−A
(5)
15 , 12
,
Br+4=A
(5)
12 , 12