5.8 Some Applications of Algebraic Computing 2315.8.4 Hankel Determinants with Symmetric Toeplitz Elements
The symmetric Toeplitz determinantTn(Section 4.5.2) is defined as follows:
Tn=|t|i−j||n,with
T 0 =1. (5.8.13)
For example,
T 1 =t 0 ,T 2 =t2
0
−t2
1,
T 3 =t3
0 −^2 t 0 t2
1 −t 0 t2
2 +2t2
1 t 2 , (5.8.14)etc. In each of the following three identities, the determinant on the left
is a Hankelian with symmetric Toeplitz elements, but when the rows
or columns are interchanged they can also be regarded as second-order
subdeterminants of|T|i−j||n, which is a symmetric Toeplitz determinant
with symmetric Toeplitz elements. The determinants on the right are
subdeterminants ofTnwith a common principal diagonal.
∣
∣
∣
∣T 0 T 1
T 1 T 2
∣
∣
∣
∣
=−|t 1 |2
,∣
∣
∣
∣
T 1 T 2
T 2 T 3
∣
∣
∣
∣
=−
∣
∣
∣
∣
t 1 t 0t 2 t 1∣
∣
∣
∣
2 , ∣ ∣ ∣ ∣
T 2 T 3
T 3 T 4
∣
∣
∣
∣
=−
∣ ∣ ∣ ∣ ∣ ∣
t 1 t 0 t 1t 2 t 1 t 0t 3 t 2 t 1∣ ∣ ∣ ∣ ∣ ∣
2. (5.8.15)
Conjecture.
∣
∣
∣
∣
Tn− 1 TnTn Tn+1∣
∣
∣
∣
=−
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
t 1 t 0 t 1 t 2 ··· tn− 2t 2 t 1 t 0 t 1 ··· tn− 3t 3 t 2 t 1 t 0 ··· tn− 4t 4 t 3 t 2 t 1 ··· tn− 5··· ··· ··· ··· ··· ···tn tn− 1 tn− 2 tn− 3 ··· t 1∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
2n.
Other relations of a similar nature include the following:
∣
∣
∣
∣
T 0 T 1
T 2 T 3
∣
∣
∣
∣
=
∣ ∣ ∣ ∣ ∣ ∣
t 0 t 1 t 2t 1 t 0 t 1t 2 t 1∣ ∣ ∣ ∣ ∣ ∣
, ∣ ∣ ∣ ∣ ∣ ∣
T 1 T 2 T 3
T 2 T 3 T 4
T 3 T 4 T 5
∣ ∣ ∣ ∣ ∣ ∣
has a factor∣ ∣ ∣ ∣ ∣ ∣
t 0 t 1 t 2t 1 t 2 t 3t 2 t 3 t 4