242 6. Applications of Determinants in Mathematical Physics
Since detP=1,P
− 1
=1
φ[
φ2
+ψ2
−ψ−ψ 1]
,
∂P
∂ρ=
1
φ
2[
−φρ φψρ−ψφρφψρ−ψφρ φ2
φρ+2φψψρ−ψ2
φρ]
,
∂P
∂ρP
− 1
=M
φ
2,
∂P
∂zP
− 1
=N
φ
2,
where
M=
[
−(φφρ+ψψρ) ψρ(φ
2
−ψ
2
)ψρ− 2 φψφρ φφρ+ψψρ]
andNis the matrix obtained fromMby replacingφρbyφzandψρbyψz.
The equation above (6.2.6) can now be expressed in the formM
ρ−
2
φ(φρM+φzN)+(Mρ+Nz) = 0 (6.2.7)where
φρM+φzN=
−
{
φ(φ
2
ρ
+φ
2
z)
+ψ(φρψρ+φzψz)}
{φρψρ+φzψz}{
(φ
2
−ψ
2
)(φρψρ+φzψz)− 2 φψ(φ
2
ρ
+φ
2
z)
}{
φ(φ
2
ρ
+φ
2
z)
+ψ(φρψρ+φzψz)}
,
Mρ+Nz
=
−{
φ(φρρ+φzz)+ψ(ψρρ+ψzz)+φ2
ρ+φ2
z+ψ2
ρ+ψ2
z}
{ψρρ+ψzz}
{
(φ2
−ψ2
)(ψρρ+ψzz)− 2 φψ(φρρ+φzz)− 2 ψ(φ2
ρ+φ2
z+ψ2
ρ+ψ2
z)}{
φ(φρρ+φzz)+ψ(ψρρ+ψzz)+φ2
ρ+φ2
z+ψ2
ρ+ψ2
z}
The Einstein equations can now be expressed in the form
[
f 11 f 12f 21 f 22]
=0,
where
f 12 =
1
φ[
φ(
ψρρ+1
ρψρ+ψzz)
−2(φρψρ+φzψz)]
=0,
f 11 =−ψf 12 −
[
φ(
φρρ+1
ρφρ+φzz)
−φ2
ρ
−φ2
z
+ψ2
ρ
+ψ2
z]
=0,
f 21 =(φ
2
−ψ2
)f 12 − 2 ψ[
φ(
φρρ+1
ρφρ+φzz)
−φ2
ρ−φ2
z+ψ2
ρ+ψ2
z]
=0,
f 22 =−f 11 =0,