6.3 The Dale Equation 247Note that the theorem cannot be applied toAdirectly sinceφmdoes not
satisfy the Appell equation for anyF(x).
Using the identity|ti+j− 2
aij|n=tn(n−1)
|aij|n,it is found that
P=(1+x)−n
2
A,P 11 =(1+x)−n
2
+1
A 11. (6.3.4)Hence,
(1 +x)A′
=n2
A−(c−1)A 11. (6.3.5)Let
αi=∑
rxr− 1
Ari
, (6.3.6)βi=∑
r(−1)
r
Ari
, (6.3.7)λ=∑
r(−1)
r
αr=
∑
r∑
s(−1)
r
xs− 1
Ars=
∑
sxs− 1
βs, (6.3.8)whererands=1, 2 , 3 ,...,nin all sums.
Applying double-sum identity (D) in Section 3.4 withfr=randgs=s−1, then (B),
(i+j−1)Aij
=∑
r∑
s[xr+s− 1
+(−1)r+s
c]Ari
Asj=xαiαj+cβiβj (6.3.9)(A
ij
)′
=−∑
r∑
sxi+j− 2
Ais
Arj=−αiαj. (6.3.10)Hence,
x(Aij
)′
+(i+j−1)Aij
=cβiβj,(xi+j− 1
Aij
)′
=c(xi− 1
βi)(xj− 1
βj).In particular,
(A
11
)′
=−α2
1 ,(xA11
)′
=cβ2
1