Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
6.3 The Dale Equation 247

Note that the theorem cannot be applied toAdirectly sinceφmdoes not


satisfy the Appell equation for anyF(x).


Using the identity

|t

i+j− 2
aij|n=t

n(n−1)
|aij|n,

it is found that


P=(1+x)

−n
2
A,

P 11 =(1+x)

−n
2
+1
A 11. (6.3.4)

Hence,


(1 +x)A


=n

2
A−(c−1)A 11. (6.3.5)

Let


αi=


r

x

r− 1
A

ri
, (6.3.6)

βi=


r

(−1)

r
A

ri
, (6.3.7)

λ=


r

(−1)

r
αr

=


r


s

(−1)

r
x

s− 1
A

rs

=


s

x

s− 1
βs, (6.3.8)

whererands=1, 2 , 3 ,...,nin all sums.


Applying double-sum identity (D) in Section 3.4 withfr=randgs=

s−1, then (B),


(i+j−1)A

ij
=


r


s

[x

r+s− 1
+(−1)

r+s
c]A

ri
A

sj

=xαiαj+cβiβj (6.3.9)

(A

ij
)


=−


r


s

x

i+j− 2
A

is
A

rj

=−αiαj. (6.3.10)

Hence,


x(A

ij
)


+(i+j−1)A

ij
=cβiβj,

(x

i+j− 1
A

ij
)


=c(x

i− 1
βi)(x

j− 1
βj).

In particular,


(A

11
)


=−α

2
1 ,

(xA

11
)


=cβ

2
1

. (6.3.11)
Free download pdf