Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

252 6. Applications of Determinants in Mathematical Physics


=2


r

brcrφr


j

e

cju
A

rj
+2


r

brcr


j

φre
cju
A
rj

cj− 1

=2


r

brcrφ

2
r−F


= (logA)

′′
−F


, (6.4.18)

R=2


j

e
cju

cj− 1


r

brcrφ


rA

rj

=2


j

e

cju

cj− 1


r

brcrφr[cjA

rj
−φrφj]

=Q−P. (6.4.19)

Hence, eliminatingP,Q, andRfrom (6.4.16)–(6.4.19),


d

2
F

du
2

− 2

dF

du

+2F(logA)

′′
=0. (6.4.20)

Put


F=e

u
y. (6.4.21)

Then, (6.4.20) is transformed into


d

2
y

du^2

−y+2y

d

2

du^2

(logA)=0. (6.4.22)

Finally, putu=ωεx,(ω


2
=−1). Then, (6.4.22) is transformed into

d
2
y

dx
2


2
y+2y

d
2

dx
2

(logA)=0,

which is identical with (6.4.1), the Kay–Moses equation. This completes


the proof of the theorem. 


6.5 The Toda Equations......................


6.5.1 The First-Order Toda Equation...........


Define two Hankel determinants (Section 4.8)AnandBnas follows:


An=|φm|n, 0 ≤m≤ 2 n− 2 ,

Bn=|φm|n, 1 ≤m≤ 2 n− 1 ,

A 0 =B 0 =1. (6.5.1)

The algebraic identities


AnB

(n+1)
n+1,n−BnA

(n+1)
n+1,n+An+1Bn−^1 =0, (6.5.2)

Bn− 1 A

(n+1)
n+1,n
−AnB

(n)
n,n− 1
+An− 1 Bn= 0 (6.5.3)
Free download pdf