260 6. Applications of Determinants in Mathematical Physics
Applying the Jacobi identity,
FF 13 , 13 =
∣
∣
∣
∣
F 11 F 13
F 31 F 33
∣
∣
∣
∣
=0.
ButF 13 , 13 = 0. The theorem follows.
Theorem 6.9. The Matsukidaira–Satsuma equations with one continuous
independent variable, one discrete independent variable, and two dependent
variables, namely
a.q
′
r
=qr(ur+1−ur),b.
u
′
rur−ur− 1=
q
′
rqr−qr− 1,
whereqrandurare functions ofx, are satisfied by the functions
qr=τr+1τr,
ur=τ
′
rτrfor all values ofnand all differentiable functionsfs(x).
Proof.
q′
r=−F 31
τ
2
r,
qr−qr− 1 =−F 33
τr− 1 τr,
u′
r=F 11
τ
2
r,
ur−ur− 1 =F 13
τr− 1 τr,
ur+1−ur=−F 31
τrτr+1.
Hence,
q′
rur+1−ur=
τr+1τr=qr,which proves (a) and
u
′
r
(qr−qr− 1 )q
′
r(ur−ur−^1 )=
F 11 F 33
F 31 F 13
=1,
which proves (b).