Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

262 6. Applications of Determinants in Mathematical Physics


Hence,






(τr,s+1)y (τrs)y

τr,s+1 τrs





=A

(n+1)
(r, s)A

(n+1)
n,n+1;1,n+1
(r, s)

=A

(n+1)
(r, s)A

(n)
n 1
(r, s)

=A

(n+1)
(r, s)A

(n−1)
(r, s+1).

Replacingsbys−1,






(τrs)y (τr,s− 1 )y

τrs τr,s− 1





=A

(n+1)
(r, s−1)A

(n−1)
(r, s), (6.6.11)

(τr+1,s)x=A

(n+1)
1 n
(r, s).

Hence,






(τr+1,s)x τr+1,s

(τrs)x τrs





=A

(n+1)
(r, s)A

(n+1)
1 ,n+1;n,n+1
(r, s)

=A

(n+1)
(r, s)A

(n−1)
(r+1,s). (6.6.12)

Theorem 6.10 follows from (6.6.9)–(6.6.12). 


Theorem 6.11.
∣ ∣ ∣ ∣ ∣ ∣
τr+1,s− 1 τr,s− 1 (τr,s− 1 )y


τr+1,s τrs (τrs)y

(τr+1,s)x (τrs)x (τrs)xy

∣ ∣ ∣ ∣ ∣ ∣

=0.

Proof. Denote the determinant byG. Then, Theorem 6.10 can be


expressed in the form


G 33 G 11 =G 31 G 13. (6.6.13)

Applying the Jacobi identity,


GG 13 , 13 =





G 11 G 13

G 31 G 33





=0.

ButG 13 , 13 = 0. The theorem follows. 


Theorem 6.12. The Matsukidaira–Satsuma equations with two contin-


uous independent variables, two discrete independent variables, and three


dependent variables, namely


a.(qrs)y=qrs(ur+1,s−urs),

b.


(urs)x

urs−ur,s− 1

=

(vr+1,s−vrs)qrs

qrs−qr,s− 1

,

whereqrs,urs, and vrsare functions of xandy, are satisfied by the


functions


qrs=

τr+1,s

τrs

,
Free download pdf