6.7 The Korteweg–de Vries Equation 263urs=(τrs)yτrs,
vrs=(τrs)xτrs,
for all values ofnand all differentiable functionsfrs(x, y).
Proof.
(qrs)y=1
τ
2
rs∣
∣
∣
∣
(τr+1,s)y (τrs)yτr+1,s τrs∣
∣
∣
∣
=
τr+1,sτrs[
(τr+1,s)yτr+1,s−
(τrs)yτrs]
=qrs(ur+1,s−urs),which proves (a).
(urs)x=G 11
τ
2
rs,
vr+1,s−vrs=−G 13
τr+1,sτrs,
urs−ur,s− 1 =G 31
τrsτr,s− 1,
qrs−qr,s− 1 =−G 33
τrsτr,s− 1Hence, referring to (6.2.13),
(qrs−qr,s− 1 )(urs)xqrs(urs−ur,s− 1 )(vr+1,s−vrs)=
G 11 G 33
G 31 G 13
=1,
which proves (b).
6.7 The Korteweg–de Vries Equation
6.7.1 Introduction
The KdV equation is
ut+6uux+uxxx=0. (6.7.1)The substitutionu=2vxtransforms it into
vt+6v2
x
+vxxx=0. (6.7.2)Theorem 6.13. The KdV equation in the form (6.7.2) is satisfied by the
function
v=Dx(logA),