Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
6.7 The Korteweg–de Vries Equation 263

urs=

(τrs)y

τrs

,

vrs=

(τrs)x

τrs

,

for all values ofnand all differentiable functionsfrs(x, y).


Proof.


(qrs)y=

1

τ
2
rs





(τr+1,s)y (τrs)y

τr+1,s τrs





=

τr+1,s

τrs

[

(τr+1,s)y

τr+1,s


(τrs)y

τrs

]

=qrs(ur+1,s−urs),

which proves (a).


(urs)x=

G 11

τ
2
rs

,

vr+1,s−vrs=−

G 13

τr+1,sτrs

,

urs−ur,s− 1 =

G 31

τrsτr,s− 1

,

qrs−qr,s− 1 =−

G 33

τrsτr,s− 1

Hence, referring to (6.2.13),


(qrs−qr,s− 1 )(urs)x

qrs(urs−ur,s− 1 )(vr+1,s−vrs)

=

G 11 G 33

G 31 G 13

=1,

which proves (b). 


6.7 The Korteweg–de Vries Equation


6.7.1 Introduction


The KdV equation is


ut+6uux+uxxx=0. (6.7.1)

The substitutionu=2vxtransforms it into


vt+6v

2
x
+vxxx=0. (6.7.2)

Theorem 6.13. The KdV equation in the form (6.7.2) is satisfied by the


function


v=Dx(logA),
Free download pdf