Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
6.7 The Korteweg–de Vries Equation 269


∂em

(A

ij
)=−A

im
A

mj

. (6.7.26)


Let


ψp=


s

A

sp

. (6.7.27)


Then, (6.7.26) can be written



r

brerA

ir
A

rj
=

1
2
(bi+bj)A

ij
−ψiψj. (6.7.28)

From (6.7.27) and (6.7.26),


∂ψp

∂eq

=−A

pq


s

A

sq

=−ψqA

pq

. (6.7.29)


Let


θp=ψ

2
p. (6.7.30)

Then,


∂θp

∂eq

=− 2 ψpψqA

pq
(6.7.31)

=

∂θq

∂ep

, (6.7.32)


2
θr

∂ep∂eq

=− 2


∂ep

(ψqψrA

qr
)

=2(ψpψqA

pr
A

qr
+ψqψrA

qp
A

rp
+ψrψpA

rq
A

pq
),

which is invariant under a permutation ofp,q, andr. Hence, ifGpqris any


function with the same property,



p,q,r

Gpqr


2
θr

∂ep∂eq

=6


p,q,r

GpqrψpψqA

pr
A

qr

. (6.7.33)


The above relations facilitate the evaluation of the derivatives ofvwhich,


from (6.7.7) and (6.7.27) can be written


v=


m

(ψm−bm).

Referring to (6.7.29),


∂v

∂er

=−ψr


m

A

mr

=−ψ

2
r

=−θr. (6.7.34)
Free download pdf