6.7 The Korteweg–de Vries Equation 269
∂
∂em
(A
ij
)=−A
im
A
mj
. (6.7.26)
Let
ψp=
∑
s
A
sp
. (6.7.27)
Then, (6.7.26) can be written
∑
r
brerA
ir
A
rj
=
1
2
(bi+bj)A
ij
−ψiψj. (6.7.28)
From (6.7.27) and (6.7.26),
∂ψp
∂eq
=−A
pq
∑
s
A
sq
=−ψqA
pq
. (6.7.29)
Let
θp=ψ
2
p. (6.7.30)
Then,
∂θp
∂eq
=− 2 ψpψqA
pq
(6.7.31)
=
∂θq
∂ep
, (6.7.32)
∂
2
θr
∂ep∂eq
=− 2
∂
∂ep
(ψqψrA
qr
)
=2(ψpψqA
pr
A
qr
+ψqψrA
qp
A
rp
+ψrψpA
rq
A
pq
),
which is invariant under a permutation ofp,q, andr. Hence, ifGpqris any
function with the same property,
∑
p,q,r
Gpqr
∂
2
θr
∂ep∂eq
=6
∑
p,q,r
GpqrψpψqA
pr
A
qr
. (6.7.33)
The above relations facilitate the evaluation of the derivatives ofvwhich,
from (6.7.7) and (6.7.27) can be written
v=
∑
m
(ψm−bm).
Referring to (6.7.29),
∂v
∂er
=−ψr
∑
m
A
mr
=−ψ
2
r
=−θr. (6.7.34)