Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
6.7 The Korteweg–de Vries Equation 271

=− 2


p,q

b

2
pbqepeqψpψqA

pq
,

S=2R. (6.7.40)

Referring to (6.7.33), (6.7.28), and (6.7.35),


T=


p,q,r

bpbqbrepeqer


2
θr

∂ep∂eq

=6


p,q

bpbqepeqψpψq


r

brerA

pr
A

qr

=6


p,q

bpbqepeqψpψq

[

1
2

(bp+bq)A

pq
−ψpψq

]

=6


p,q

b

2
p
bqepeqψpψqA

pq
− 6


p

bpepθp


q

bqeqθq

=−(3R+6v

2
x).

Hence,


vxxx=−vt+R+2R−(3R+6v

2
x

)

=−(vt+6v

2
x

),

which completes the verification of the first form of solution of the KdV


equation by means of partial derivatives with respect to the exponential


functions.


6.7.4 The Wronskian Solution


Theorem 6.14. The determinantAin Theorem 6.7.1 can be expressed


in the form


A=kn(e 1 e 2 ···en)

1 / 2
W,

whereknis independent ofxandt, andW is the Wronskian defined as


follows:


W=


∣Dj−^1
x
(φi)



n

, (6.7.41)

where


φi=λie

1 / 2
i +μie

− 1 / 2
i , (6.7.42)

ei= exp(−bix+b

3
i
t+εi), (6.7.43)

λi=

1

2

n

p=1

(bp+bi),

μi=

n

p=1
p=i

(bp−bi). (6.7.44)
Free download pdf