6.7 The Korteweg–de Vries Equation 271
=− 2
∑
p,q
b
2
pbqepeqψpψqA
pq
,
S=2R. (6.7.40)
Referring to (6.7.33), (6.7.28), and (6.7.35),
T=
∑
p,q,r
bpbqbrepeqer
∂
2
θr
∂ep∂eq
=6
∑
p,q
bpbqepeqψpψq
∑
r
brerA
pr
A
qr
=6
∑
p,q
bpbqepeqψpψq
[
1
2
(bp+bq)A
pq
−ψpψq
]
=6
∑
p,q
b
2
p
bqepeqψpψqA
pq
− 6
∑
p
bpepθp
∑
q
bqeqθq
=−(3R+6v
2
x).
Hence,
vxxx=−vt+R+2R−(3R+6v
2
x
)
=−(vt+6v
2
x
),
which completes the verification of the first form of solution of the KdV
equation by means of partial derivatives with respect to the exponential
functions.
6.7.4 The Wronskian Solution
Theorem 6.14. The determinantAin Theorem 6.7.1 can be expressed
in the form
A=kn(e 1 e 2 ···en)
1 / 2
W,
whereknis independent ofxandt, andW is the Wronskian defined as
follows:
W=
∣
∣Dj−^1
x
(φi)
∣
∣
n
, (6.7.41)
where
φi=λie
1 / 2
i +μie
− 1 / 2
i , (6.7.42)
ei= exp(−bix+b
3
i
t+εi), (6.7.43)
λi=
1
2
n
∏
p=1
(bp+bi),
μi=
n
∏
p=1
p=i
(bp−bi). (6.7.44)