Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
6.7 The Korteweg–de Vries Equation 273

Hence, from (6.7.48),


K

(n)
ij

Un

=

μj

λi

[

H

(n)
ij

Xn

]

yi=−xi=bi

=

μj

λi

∏n

p=1

(bp+bj)

(bi+bj)

∏n

p=1
p=i

(bp−bj)

=

2 λjμj

(bi+bj)λiμi

. (6.7.50)

Hence,


|Eij|n=





δijei+

2 λjμj

(bi+bj)λiμi





n

. (6.7.51)

Multiply rowiof this determinant byλiμi,1≤i≤n, and divide column


jbyλjμj,1≤j≤n. These operations do not affect the diagonal elements


or the value of the determinant but now


|Eij|n=





δijei+

2

bi+bj





n

=A. (6.7.52)

It follows from (6.7.46) and (6.7.49) that


2

n(n−1)/ 2
(e 1 e 2 ···en)

1 / 2
W=UnA, (6.7.53)

which completes the proof of the theorem sinceUnis independent ofxand


t. 


It follows that

logA= constant +

1

2


i

(−bix+b

3
it) + logW. (6.7.54)

Hence,


u=2D

2
x
(logA)=2D

2
x
(logW) (6.7.55)

so that solutions containingAandW have equally valid claims to be


determinantal solutions of the KdV equation.


6.7.5 Direct Verification of the Wronskian Solution


The substitution


u=2D

2
x
(logw)
Free download pdf