6.7 The Korteweg–de Vries Equation 273
Hence, from (6.7.48),
K
(n)
ij
Un
=
μj
λi
[
H
(n)
ij
Xn
]
yi=−xi=bi
=
μj
λi
∏n
p=1
(bp+bj)
(bi+bj)
∏n
p=1
p=i
(bp−bj)
=
2 λjμj
(bi+bj)λiμi
. (6.7.50)
Hence,
|Eij|n=
∣
∣
∣
∣
δijei+
2 λjμj
(bi+bj)λiμi
∣
∣
∣
∣
n
. (6.7.51)
Multiply rowiof this determinant byλiμi,1≤i≤n, and divide column
jbyλjμj,1≤j≤n. These operations do not affect the diagonal elements
or the value of the determinant but now
|Eij|n=
∣
∣
∣
∣
δijei+
2
bi+bj
∣
∣
∣
∣
n
=A. (6.7.52)
It follows from (6.7.46) and (6.7.49) that
2
n(n−1)/ 2
(e 1 e 2 ···en)
1 / 2
W=UnA, (6.7.53)
which completes the proof of the theorem sinceUnis independent ofxand
t.
It follows that
logA= constant +
1
2
∑
i
(−bix+b
3
it) + logW. (6.7.54)
Hence,
u=2D
2
x
(logA)=2D
2
x
(logW) (6.7.55)
so that solutions containingAandW have equally valid claims to be
determinantal solutions of the KdV equation.
6.7.5 Direct Verification of the Wronskian Solution
The substitution
u=2D
2
x
(logw)