6.7 The Korteweg–de Vries Equation 275
Hence,wwzz−w
2
z
=0,
F=wwxt−wxwt+3w
2
xx
− 4 wxwxxx+wwxxxx+3(wwzz−w
2
z
)
=w
[
(wt+4wxxx)x−3(wxxxx−wzz)
]
−wx(wt+4wxxx)+3(w
2
xx
−w
2
z
). (6.7.60)
The evaluation of the derivatives of a Wronskian is facilitated by expressing
it in column vector notation.
Let
W=
∣
∣
..............................
C 0 C 1 ···Cn− 4 Cn− 3 Cn− 2 Cn− 1
∣
∣
n
, (6.7.61)
where
Cj=
[
D
j
x(ψ^1 )D
j
x(ψ^2 )···D
j
x(ψn)
]T
.
The significance of the row of dots above the (n−3) columnsC 0 toCn− 4
will emerge shortly. It follows from (6.7.58) and (6.7.59) that
Dx(Cj)=Cj+1,
Dz(Cj)=D
2
x
(Cj)=Cj+2,
Dt(Cj)=− 4 D
3
x
(Cj)=− 4 Cj+3. (6.7.62)
Hence, differentiating (6.7.61) and discarding determinants with two
identical columns,
wx=
∣
∣
..............................
C 0 C 1 ···Cn− 4 Cn− 3 Cn− 2 Cn
∣
∣
n
,
wxx=
∣
∣
..............................
C 0 C 1 ···Cn− 4 Cn− 3 Cn− 1 Cn
∣
∣
n
+
∣
∣
..............................
C 0 C 1 ···Cn− 4 Cn− 3 Cn− 2 Cn+1
∣
∣
n
,
wz=
∣
∣
..............................
C 0 C 1 ···Cn− 4 Cn− 3 CnCn− 1
∣
∣
n
+
∣
∣
..............................
C 0 C 1 ···Cn− 4 Cn− 3 Cn− 2 Cn+1
∣
∣
n
,
etc. The significance of the row of dots above columnsC 0 toCn− 4 is
beginning to emerge. These columns are common to all the determinants
which arise in all the derivatives which appear in the second line of (6.7.60).
They can therefore be omitted without causing confusion.
Let
Vpqr=
∣
∣
..............................
C 0 C 1 ···Cn− 4 CpCqCr
∣
∣
n
. (6.7.63)
Then,Vpqr=0ifp,q, andrare not distinct andVqpr=−Vpqr, etc. In this
notation,
w=Vn− 3 ,n− 2 ,n− 1 ,
wx=Vn− 3 ,n− 2 ,n,
wxx=Vn− 3 ,n− 1 ,n+Vn− 3 ,n− 2 ,n+1,
wxxx=Vn− 2 ,n− 1 ,n+2Vn− 3 ,n− 1 ,n+1+Vn− 3 ,n− 2 ,n+2,