Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

278 6. Applications of Determinants in Mathematical Physics


Applying (A),

v=Dx(logA)=−


r

λrerA

rr
, (6.8.3)

Dy(logA)=


r

λrμrerA

rr
, (6.8.4)

Dt(logA)=4


r

λr(b

2
r−brcr+c

2
r)erA

rr

. (6.8.5)


Applying (B),


Dx(A

ij
)=


r

λrerA

ir
A

rj
, (6.8.6)

Dy(A

ij
)=−


r

λrμrerA

ir
A

rj
, (6.8.7)

Dt(A

ij
)=− 4


r

λr(b

2
r−brcr+c

2
r)erA

ir
A

rj

. (6.8.8)


Applying (C) with


i.fr=br,gr=cr;

ii.fr=b

2
r,gr=−c

2
r;

iii.fr=b


3
r,gr=c

3
r;

in turn,



r

λrerA

rr
+


r,s

A

rs
=


r

λr, (6.8.9)


r

λrμrerA

rr
+


r,s

(br−cs)A

rs
=


r

λrμr, (6.8.10)


r

λr(b

2
r−brcr+c

2
r)erA

rr
+


r,s

(b

2
r−brcs+c

2
s)A

rs

=


r

λr(b

2
r
−brcr+c

2
r

).(6.8.11)

Applying (D) with (i)–(iii) in turn,



r

λrerA

ir
A

rj
+


r,s

A

is
A

rj
=(bi+cj)A

ij
, (6.8.12)


r

λrμrerA

ir
A

rj
+


r,s

(br−cs)A

is
A

rj
=(b

2
i
−c

2
j

)A

ij
, (6.8.13)


r

λr(b

2
r−brcr+c

2
r)erA

ir
A

rj
+


r,s

(b

2
r−brcs+c

2
s)A

is
A

rj

=(b

3
i
+c

3
j

)A

ij

. (6.8.14)


Eliminating the sum common to (6.8.3) and (6.8.9), the sum common to


(6.8.4) and (6.8.10) and the sum common to (6.8.5) and (6.8.11), we find

Free download pdf