278 6. Applications of Determinants in Mathematical Physics
Applying (A),
v=Dx(logA)=−
∑
r
λrerA
rr
, (6.8.3)
Dy(logA)=
∑
r
λrμrerA
rr
, (6.8.4)
Dt(logA)=4
∑
r
λr(b
2
r−brcr+c
2
r)erA
rr
. (6.8.5)
Applying (B),
Dx(A
ij
)=
∑
r
λrerA
ir
A
rj
, (6.8.6)
Dy(A
ij
)=−
∑
r
λrμrerA
ir
A
rj
, (6.8.7)
Dt(A
ij
)=− 4
∑
r
λr(b
2
r−brcr+c
2
r)erA
ir
A
rj
. (6.8.8)
Applying (C) with
i.fr=br,gr=cr;
ii.fr=b
2
r,gr=−c
2
r;
iii.fr=b
3
r,gr=c
3
r;
in turn,
∑
r
λrerA
rr
+
∑
r,s
A
rs
=
∑
r
λr, (6.8.9)
∑
r
λrμrerA
rr
+
∑
r,s
(br−cs)A
rs
=
∑
r
λrμr, (6.8.10)
∑
r
λr(b
2
r−brcr+c
2
r)erA
rr
+
∑
r,s
(b
2
r−brcs+c
2
s)A
rs
=
∑
r
λr(b
2
r
−brcr+c
2
r
).(6.8.11)
Applying (D) with (i)–(iii) in turn,
∑
r
λrerA
ir
A
rj
+
∑
r,s
A
is
A
rj
=(bi+cj)A
ij
, (6.8.12)
∑
r
λrμrerA
ir
A
rj
+
∑
r,s
(br−cs)A
is
A
rj
=(b
2
i
−c
2
j
)A
ij
, (6.8.13)
∑
r
λr(b
2
r−brcr+c
2
r)erA
ir
A
rj
+
∑
r,s
(b
2
r−brcs+c
2
s)A
is
A
rj
=(b
3
i
+c
3
j
)A
ij
. (6.8.14)
Eliminating the sum common to (6.8.3) and (6.8.9), the sum common to
(6.8.4) and (6.8.10) and the sum common to (6.8.5) and (6.8.11), we find