278 6. Applications of Determinants in Mathematical Physics
Applying (A),v=Dx(logA)=−∑
rλrerArr
, (6.8.3)Dy(logA)=∑
rλrμrerArr
, (6.8.4)Dt(logA)=4∑
rλr(b2
r−brcr+c2
r)erArr. (6.8.5)
Applying (B),
Dx(Aij
)=∑
rλrerAir
Arj
, (6.8.6)Dy(Aij
)=−∑
rλrμrerAir
Arj
, (6.8.7)Dt(Aij
)=− 4∑
rλr(b2
r−brcr+c2
r)erAir
Arj. (6.8.8)
Applying (C) with
i.fr=br,gr=cr;ii.fr=b2
r,gr=−c2
r;iii.fr=b
3
r,gr=c3
r;in turn,
∑rλrerArr
+∑
r,sA
rs
=∑
rλr, (6.8.9)∑
rλrμrerArr
+∑
r,s(br−cs)Ars
=∑
rλrμr, (6.8.10)∑
rλr(b2
r−brcr+c2
r)erArr
+∑
r,s(b2
r−brcs+c2
s)Ars=
∑
rλr(b2
r
−brcr+c2
r).(6.8.11)
Applying (D) with (i)–(iii) in turn,
∑rλrerAir
Arj
+∑
r,sA
is
Arj
=(bi+cj)Aij
, (6.8.12)∑
rλrμrerAir
Arj
+∑
r,s(br−cs)Ais
Arj
=(b2
i
−c2
j)A
ij
, (6.8.13)∑
rλr(b2
r−brcr+c2
r)erAir
Arj
+∑
r,s(b2
r−brcs+c2
s)Ais
Arj=(b3
i
+c3
j)A
ij. (6.8.14)
Eliminating the sum common to (6.8.3) and (6.8.9), the sum common to
(6.8.4) and (6.8.10) and the sum common to (6.8.5) and (6.8.11), we find