6.8 The Kadomtsev–Petviashvili Equation 279
new formulae for the derivatives of logA:
v=Dx(logA)=
∑
r,s
A
rs
−
∑
r
λr, (6.8.15)
Dy(logA)=−
∑
r,s
(br−cs)A
rs
+
∑
r
λrμr, (6.8.16)
Dt(logA)=− 4
∑
r,s
(b
2
r−brcs+c
2
s)A
rs
+4
∑
r
λr(b
2
r
−brcr+c
2
r
). (6.8.17)
Equations (6.8.16) and (6.8.17) are not applied below but have been
included for their interest.
Eliminating the sum common to (6.8.6) and (6.8.12), the sum common
to (6.8.7) and (6.8.13), and the sum common to (6.8.8) and (6.8.14), we
find new formulas for the derivatives ofA
ij
:
Dx(A
ij
)=(bi+cj)A
ij
−
∑
r,s
A
is
A
rj
,
Dy(A
ij
)=−(b
2
i
−c
2
j
)A
ij
+
∑
r,s
(br−cs)A
is
A
rj
,
Dt(A
ij
)=−4(b
3
i
+c
3
j
)A
ij
+4
∑
r,s
(b
2
r
−brcs+c
2
s
)A
is
A
rj
.(6.8.18)
Define functionshij,Hij, andHijas follows:
hij=
n
∑
r=1
n
∑
s=1
b
i
r
c
j
s
A
rs
,
Hij=hij+hji=Hji,
Hij=hij−hji=−Hji. (6.8.19)
The derivatives of these functions are found by applying (6.8.18):
Dx(hij)=
∑
r,s
b
i
rc
j
s
[
(br+cs)A
rs
−
∑
p,q
A
rq
A
ps
]
=
∑
r,s
b
i
rc
j
s(br+cs)A
rs
−
∑
r,q
b
i
rA
rq
∑
p,s
c
j
sA
ps
=hi+1,j+hi,j+1−hi 0 h 0 j,
which is a nonlinear differential recurrence relation. Similarly,
Dy(hij)=hi 0 h 1 j−hi 1 h 0 j−hi+2,j+hi,j+2,
Dt(hij)=4(hi 0 h 2 j−hi 1 h 1 j+hi 2 h 0 j−hi+3,j−hi,j+3),
Dx(Hij)=Hi+1,j+Hi,j+1−hi 0 h 0 j−h 0 ihj 0 ,
Dy(Hij)=(hi 0 h 1 j+h 0 ihj 1 )−(hi 1 h 0 j+h 1 ihj 0 )