Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
6.8 The Kadomtsev–Petviashvili Equation 279

new formulae for the derivatives of logA:


v=Dx(logA)=


r,s

A

rs


r

λr, (6.8.15)

Dy(logA)=−


r,s

(br−cs)A

rs
+


r

λrμr, (6.8.16)

Dt(logA)=− 4


r,s

(b

2
r−brcs+c

2
s)A

rs

+4


r

λr(b

2
r
−brcr+c

2
r

). (6.8.17)

Equations (6.8.16) and (6.8.17) are not applied below but have been


included for their interest.


Eliminating the sum common to (6.8.6) and (6.8.12), the sum common

to (6.8.7) and (6.8.13), and the sum common to (6.8.8) and (6.8.14), we


find new formulas for the derivatives ofA


ij
:

Dx(A

ij
)=(bi+cj)A

ij


r,s

A

is
A

rj
,

Dy(A

ij
)=−(b

2
i
−c

2
j

)A

ij
+


r,s

(br−cs)A

is
A

rj
,

Dt(A

ij
)=−4(b

3
i
+c

3
j

)A

ij
+4


r,s

(b

2
r
−brcs+c

2
s

)A

is
A

rj
.(6.8.18)

Define functionshij,Hij, andHijas follows:


hij=

n

r=1

n

s=1

b

i
r
c

j
s

A

rs
,

Hij=hij+hji=Hji,

Hij=hij−hji=−Hji. (6.8.19)

The derivatives of these functions are found by applying (6.8.18):


Dx(hij)=


r,s

b

i
rc

j
s

[

(br+cs)A

rs


p,q

A

rq
A

ps

]

=


r,s

b

i
rc

j
s(br+cs)A

rs


r,q

b

i
rA

rq


p,s

c

j
sA

ps

=hi+1,j+hi,j+1−hi 0 h 0 j,

which is a nonlinear differential recurrence relation. Similarly,


Dy(hij)=hi 0 h 1 j−hi 1 h 0 j−hi+2,j+hi,j+2,

Dt(hij)=4(hi 0 h 2 j−hi 1 h 1 j+hi 2 h 0 j−hi+3,j−hi,j+3),

Dx(Hij)=Hi+1,j+Hi,j+1−hi 0 h 0 j−h 0 ihj 0 ,

Dy(Hij)=(hi 0 h 1 j+h 0 ihj 1 )−(hi 1 h 0 j+h 1 ihj 0 )
Free download pdf