280 6. Applications of Determinants in Mathematical Physics
−Hi+2,j+Hi,j+2. (6.8.20)From (6.8.15),
v=h 00 −constant.The derivatives ofvcan now be found in terms of thehijandHijwith the
aid of (6.8.20):
vx=H 10 h2
00 ,vxx=H 20 +H 11 − 3 h 00 H 10 +2h3
00 ,vxxx=12h2
00 H^10 −^3 H2
10 −^4 h^00 H^20 −^3 h^00 H^11 +3H^21+H 30 − 2 h 10 h 01 − 6 h4
00 ,vy=h 00̄
H 10 −
̄
H 20
vyy=2(h 10 h 20 +h 01 h 02 )−(h 10 h 02 +h 01 h 20 )−h 00 (h2
10 −h^10 h^01 +h2
01 )+2h2
00 h^11− 2 h 00 H 21 +H 22 +h 00 H 30 −H 40 ,vt=4(h 00 H 20 −h 10 h 01 −H 30 ). (6.8.21)Hence,
vt+6v2
x
+vxxx=3(h2
10
+h2
01
−h 00 H 11 +H 21 −H 30 ). (6.8.22)The theorem appears after differentiating once again with respect tox.
6.8.2 The Wronskian Solution
The substitution
u=2D2
x
(logw)into the KP equation yields
(ut+6uux+uxxx)x+3uyy=2D2
x(
G
w
2)
, (6.8.23)
where
G=wwxt−wxwt+3w2
xx−^4 wxwxxx+wwxxxx+3(wwyy−w2
y).Hence, the KP equation will be satisfied if
G=0. (6.8.24)
The functionGis identical in form with the functionF in the first line
of (6.7.60) in the section on the KdV equation, but the symbolyin this
section and the symbolzin the KdV section have different origins. In this
section,yis one of the three independent variablesx,y, andtin the KP
equation whereasxandtare the only independent variables in the KdV
section andzis introduced to facilitate the analysis.