Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

280 6. Applications of Determinants in Mathematical Physics


−Hi+2,j+Hi,j+2. (6.8.20)

From (6.8.15),


v=h 00 −constant.

The derivatives ofvcan now be found in terms of thehijandHijwith the


aid of (6.8.20):


vx=H 10 h

2
00 ,

vxx=H 20 +H 11 − 3 h 00 H 10 +2h

3
00 ,

vxxx=12h

2
00 H^10 −^3 H

2
10 −^4 h^00 H^20 −^3 h^00 H^11 +3H^21

+H 30 − 2 h 10 h 01 − 6 h

4
00 ,

vy=h 00

̄

H 10 −

̄

H 20

vyy=2(h 10 h 20 +h 01 h 02 )−(h 10 h 02 +h 01 h 20 )

−h 00 (h

2
10 −h^10 h^01 +h

2
01 )+2h

2
00 h^11

− 2 h 00 H 21 +H 22 +h 00 H 30 −H 40 ,

vt=4(h 00 H 20 −h 10 h 01 −H 30 ). (6.8.21)

Hence,


vt+6v

2
x
+vxxx=3(h

2
10
+h

2
01
−h 00 H 11 +H 21 −H 30 ). (6.8.22)

The theorem appears after differentiating once again with respect tox. 


6.8.2 The Wronskian Solution


The substitution


u=2D

2
x
(logw)

into the KP equation yields


(ut+6uux+uxxx)x+3uyy=2D

2
x

(

G

w
2

)

, (6.8.23)

where


G=wwxt−wxwt+3w

2
xx−^4 wxwxxx+wwxxxx+3(wwyy−w

2
y).

Hence, the KP equation will be satisfied if


G=0. (6.8.24)

The functionGis identical in form with the functionF in the first line


of (6.7.60) in the section on the KdV equation, but the symbolyin this


section and the symbolzin the KdV section have different origins. In this


section,yis one of the three independent variablesx,y, andtin the KP


equation whereasxandtare the only independent variables in the KdV


section andzis introduced to facilitate the analysis.

Free download pdf