6.9 The Benjamin–Ono Equation 283two columns as follows:
P=
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
∣
∣
c 1 1c 2 1··· ···[aij]n ··· ······ ···cn 1−c 1 −c 2 ··· −cn 00− 1 − 1 ··· − 100∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
∣
∣
∣
n+2(6.9.9)
and letQdenote the determinant of order (n+ 2) obtained by bordering
Bin a similar manner. Four of the cofactors ofPare
Pn+1,n+1=∣
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
1
1
···
[aij]n ······1− 1 − 1 ··· − 10∣
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
n+1, (6.9.10)
Pn+1,n+2=−∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
c 1c 2···[aij]n ······cn− 1 − 1 ··· − 10∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
n+1=
∑
r∑
scrArs, (6.9.11)Pn+2,n+1=−∣ ∣ ∣ ∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ ∣ ∣
1
1
···
[aij]n ······1−c 1 −c 2 ··· −cn 0∣ ∣ ∣ ∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ ∣ ∣
n+1, (6.9.12)
Pn+2,n+2=∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
c 1c 2···[aij]n ······cn−c 1 −c 2 ··· −cn 0∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
n+1