Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

290 6. Applications of Determinants in Mathematical Physics


Lemma 6.19.


a.

∂epq

∂ρ


∂apq

∂z

=

(

q−p

ρ

)

epq,

b.


∂apq

∂ρ


∂epq

∂z

=

(

p−q+1

ρ

)

apq (ω

2
=−1).

Proof. Ifp≥q−1, then, applying (6.10.3) withr→p−q,


(

∂ρ

+

p−q

ρ

)

epq=

(


∂ρ

+

p−q

ρ

)


p−q+1
up−q+1)

=−


∂z


p−q+1
up−q)

=−ω

∂apq

∂z

.

Ifp<q−1, then, applying (6.10.4) withr→q−p,


(

∂ρ

+

p−q

ρ

)

epq=

(


∂ρ


q−p

ρ

)


q−p− 1
uq−p− 1 )

=


∂z


q−p− 1
uq−p)

=−ω

∂apq

∂z

,

which proves (a). To prove (b) withp≥q−1, apply (6.10.4) withr→


p−q+ 1. Whenp<q−1, apply (6.10.3) withr→q−p−1. 


Lemma 6.20.


a.E

2 ∂E

n 1

∂ρ

+ωA

2 ∂A

n 1

∂z

=

(n−1)E

2
E

n 1

ρ

,

b.A


2

∂A

n 1

∂ρ

+ωE

2

∂E

n 1

∂z

=

(n−2)A
2
A
n 1

ρ


2
=−1).

Proof.


A=|apq|n,

n

p=1

apqA

pr
=δqr,

E=|epq|n,

n

p=1

epqE

pr
=δqr.

Applying the double-sum identity (B) (Section 3.4) and (6.10.12),

∂E

n 1

∂ρ

=−


p


q

∂epq

∂ρ

E

p 1
E

nq
,

∂A

n 1

∂z

=−


p


q

∂apq

∂z

A

pn
A

1 q
Free download pdf