290 6. Applications of Determinants in Mathematical Physics
Lemma 6.19.
a.∂epq∂ρ+ω∂apq∂z=
(
q−pρ)
epq,b.
∂apq∂ρ+ω∂epq∂z=
(
p−q+1ρ)
apq (ω2
=−1).Proof. Ifp≥q−1, then, applying (6.10.3) withr→p−q,
(
∂∂ρ+
p−qρ)
epq=(
∂
∂ρ+
p−qρ)
(ωp−q+1
up−q+1)=−
∂
∂z(ωp−q+1
up−q)=−ω∂apq∂z.
Ifp<q−1, then, applying (6.10.4) withr→q−p,
(
∂∂ρ+
p−qρ)
epq=(
∂
∂ρ−
q−pρ)
(ωq−p− 1
uq−p− 1 )=
∂
∂z(ωq−p− 1
uq−p)=−ω∂apq∂z,
which proves (a). To prove (b) withp≥q−1, apply (6.10.4) withr→
p−q+ 1. Whenp<q−1, apply (6.10.3) withr→q−p−1.
Lemma 6.20.
a.E2 ∂E
n 1∂ρ+ωA2 ∂A
n 1∂z=
(n−1)E2
En 1ρ,
b.A
2∂A
n 1∂ρ+ωE2∂E
n 1∂z=
(n−2)A
2
A
n 1ρ(ω2
=−1).Proof.
A=|apq|n,n
∑p=1apqApr
=δqr,E=|epq|n,n
∑p=1epqEpr
=δqr.Applying the double-sum identity (B) (Section 3.4) and (6.10.12),∂E
n 1∂ρ=−
∑
p∑
q∂epq∂ρE
p 1
Enq
,∂A
n 1∂z=−
∑
p∑
q∂apq∂zA
pn
A1 q