6.10 The Einstein and Ernst Equations 291
=−
(
E
A
) 2
∑
p
∑
q
∂apq
∂z
E
p 1
E
nq
.
Hence, referring to Lemma 6.19,
∂E
n 1
∂ρ
+ω
(
A
E
) 2
∂A
n 1
∂z
=−
∑
p
∑
q
(
∂epq
∂ρ
+ω
∂apq
∂z
)
E
pq
E
nq
=
1
ρ
∑
p
∑
q
(p−q)epqE
p 1
E
nq
=
1
ρ
[
∑
p
pE
p 1
∑
q
epqE
nq
−
∑
q
qE
nq
∑
p
epqE
p 1
]
=
1
ρ
[
∑
p
pE
p 1
δpn−
∑
q
qE
nq
δq 1
]
=
1
ρ
(nE
n 1
−E
n 1
),
which is equivalent to (a).
∂A
n 1
∂ρ
=
∂A
1 n
∂ρ
=−
∑
p
∑
q
∂apq
∂ρ
A
pn
A
1 q
∂E
n 1
∂z
=−
∑
p
∑
q
∂epq
∂z
E
p 1
E
nq
=−
(
A
E
) 2
∑
p
∑
q
∂epq
∂z
A
pn
A
1 q
.
Hence,
∂A
n 1
∂ρ
+ω
(
E
A
) 2
∂E
n 1
∂z
=−
∑
p
∑
q
(
∂apq
∂ρ
+ω
∂epq
∂z
)
A
pn
A
1 q
=−
1
ρ
∑
p
∑
q
(p−q+1)apqA
pn
A
1 q
=
1
ρ
[
∑
q
qA
1 q
∑
p
apqA
pn
−
∑
p
(p+1)A
pn
∑
q
apqA
1 q
]
=
1
ρ
[
∑
q
qA
1 q
δqn−
∑
p
(p+1)A
pn
δp 1
]
=
1
ρ
(nA
1 n
− 2 A
1 n
)(A
1 n
=A
n 1
),