Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
6.10 The Einstein and Ernst Equations 291

=−

(

E

A

) 2


p


q

∂apq

∂z

E

p 1
E

nq
.

Hence, referring to Lemma 6.19,


∂E

n 1

∂ρ


(

A

E

) 2

∂A

n 1

∂z

=−


p


q

(

∂epq

∂ρ


∂apq

∂z

)

E

pq
E

nq

=

1

ρ


p


q

(p−q)epqE

p 1
E

nq

=

1

ρ

[


p

pE

p 1


q

epqE

nq


q

qE

nq


p

epqE

p 1

]

=

1

ρ

[


p

pE

p 1
δpn−


q

qE

nq
δq 1

]

=

1

ρ

(nE

n 1
−E

n 1
),

which is equivalent to (a).


∂A

n 1

∂ρ

=

∂A

1 n

∂ρ

=−


p


q

∂apq

∂ρ

A

pn
A

1 q

∂E

n 1

∂z

=−


p


q

∂epq

∂z

E

p 1
E

nq

=−

(

A

E

) 2


p


q

∂epq

∂z

A

pn
A

1 q
.

Hence,


∂A

n 1

∂ρ


(

E

A

) 2

∂E

n 1

∂z

=−


p


q

(

∂apq

∂ρ


∂epq

∂z

)

A

pn
A

1 q

=−

1

ρ


p


q

(p−q+1)apqA

pn
A

1 q

=

1

ρ

[


q

qA

1 q


p

apqA

pn


p

(p+1)A

pn


q

apqA

1 q

]

=

1

ρ

[


q

qA

1 q
δqn−


p

(p+1)A

pn
δp 1

]

=

1

ρ

(nA

1 n
− 2 A

1 n
)(A

1 n
=A

n 1
),
Free download pdf