6.10 The Einstein and Ernst Equations 301Hence,
PnPn− 1=
{
2
ρ} 2 n− 1V 2 n(c){
G
F
}
,
Qn+1Qn=−
{
2
ρ} 2 n− 1V 2 n(c){
F
∗G
∗}
(6.10.61)
ζ+=− 22 n− 1
V 2 n(c){
F
∗G
∗}
,
ζ−=22 n− 1
V 2 n(c){
G
F
}
. (6.10.62)
Finally, applying the B ̈acklund transformationεin Appendix A.12 with
b=2
2 n− 1
V 2 n(c),ζ′
+=
ζ−− 22 n− 1
V 2 n(c)ζ−+2
2 n− 1
V 2 n(c)=
1 −(F/G)
1+(F/G)
.
Similarly,
ζ′
−=
1 −(F
∗
/G∗
)1+(F
∗
/G
∗
). (6.10.63)
Discarding the primes,ζ−=ζ
∗
+. Hence, referring to (6.2.13),φ=1
2
(ζ++ζ−)=1
2
(ζ++ζ∗
+),ψ=1
2 ω(ζ+−ζ−)=1
2 ω(ζ+−ζ∗
+)(ω2
=−1), (6.10.64)which are both real. It follows that these solutions are physically significant.
Exercise.Prove the following identities:
A 2 n=αn(GG∗
−FF∗
),A 2 n+1=βnF∗
G,A 2 n− 1 =βn− 1 FG∗
,A
(2n+1)
1 , 2 n+1
=αn(GG∗
+FF∗
),where
αn=(−1)
n
22 n(n−1)
V2(n−1)
2 nρ
2 n(n−1)(^2) ∏n
i=1
εi
,
βn=(−1)
n− 1
22 n
2
V2 n− 1
2 nρ^2 n(^2) − 1
(^2) ∏n
i=1
ε
∗
i