6.11 The Relativistic Toda Equation — A Brief Note 303x=t√
1 −a
2
=ct
√
1+c
2. (6.11.4)
Equations (6.11.1)–(6.11.3) are satisfied by the functions
Un=|ui,n+j− 1 |m,Vn=|vi,n+j− 1 |m,Wn=|wi,n+j− 1 |m, (6.11.5)where the determinants are Casoratians (Section 4.14) of arbitrary order
mwhose elements are given by
uij=Fij+Gij,vij=aiFij+1
aiGij,wij=1
aiFij+aiGij, (6.11.6)where
Fij=(
1
ai−a)jexp(ξi),Gij=(
ai1 −aai)jexp(ηi),ξi=xai+bi,ηi=aix+ci, (6.11.7)and where theai,bi, andciare arbitrary constants.