310 Appendix
=(−1)
i+m+1
sgn{
12 ... (i−1)(i+1) ... (m−1)r 3 r 4 ... ... ... rm}
m− 2,
where 1 ≤rk≤m−2,rk=i, and 3≤k≤m.
Proof. The casesi= 1 andi>1 are considered separately. Wheni=1,
then 2≤rk≤m−1. Letpdenote the number of inversions required to
transform the set{r 3 r 4 ...rm}m− 2 into the set{ 23 ...(m−1)}m− 2 , that
is,
(−1)
p
= sgn{
23 ... (m−1)r 3 r 4 ... rm}
m− 2.
Hence
sgn{
12 3 4... mimr 3 r 4 ... rm}
m=(−1)
p
sgn{
1234 ... mim 23 ... (m−1)}
m=(−1)
p+m− 2
sgn{
1234 ... (m−1)m1234 ... (m−1)m}
m=(−1)
p+m− 2=(−1)
m− 2
sgn{
23 ... (m−1)r 3 r 4 ... rm}
m− 2,
which proves the lemma wheni=1.
Wheni>1, letqdenote the number of inversions required to transformthe set{r 3 r 4 ···rm}m− 2 into the set{ 12 ···(i−1)(i+1)···(m−1)}m− 2.
Then,
(−1)
q
= sgn{
12 ... (i−1)(i+1) ... (m−1)r 3 r 4 ... ... ... rm}
m− 2.
Hence,
sgn{
12 3 4··· mimr 3 r 4 ··· rm}
m=(−1)
q
sgn{
1234 ··· ··· ··· (m−1) mim 12 ··· (i−1)(i+1) ··· (m−2) (m−1)}
m=(−1)
q+m
sgn{
1234 ··· ··· ··· (m−1) mi 123 ··· (i−1)(i+1) ··· (m−1) m}
m=(−1)
q+m+i− 1
sgn{
1234 ··· m1234 ··· m}
m=(−1)q+m+i− 1=(−1)
m+i− 1
sgn{
12 ··· (i−1)(i+1) ··· (m−1)r 3 r 4 ··· ··· ··· rm}
m− 2