310 Appendix
=(−1)
i+m+1
sgn
{
12 ... (i−1)(i+1) ... (m−1)
r 3 r 4 ... ... ... rm
}
m− 2
,
where 1 ≤rk≤m−2,rk=i, and 3≤k≤m.
Proof. The casesi= 1 andi>1 are considered separately. Wheni=1,
then 2≤rk≤m−1. Letpdenote the number of inversions required to
transform the set{r 3 r 4 ...rm}m− 2 into the set{ 23 ...(m−1)}m− 2 , that
is,
(−1)
p
= sgn
{
23 ... (m−1)
r 3 r 4 ... rm
}
m− 2
.
Hence
sgn
{
12 3 4... m
imr 3 r 4 ... rm
}
m
=(−1)
p
sgn
{
1234 ... m
im 23 ... (m−1)
}
m
=(−1)
p+m− 2
sgn
{
1234 ... (m−1)m
1234 ... (m−1)m
}
m
=(−1)
p+m− 2
=(−1)
m− 2
sgn
{
23 ... (m−1)
r 3 r 4 ... rm
}
m− 2
,
which proves the lemma wheni=1.
Wheni>1, letqdenote the number of inversions required to transform
the set{r 3 r 4 ···rm}m− 2 into the set{ 12 ···(i−1)(i+1)···(m−1)}m− 2.
Then,
(−1)
q
= sgn
{
12 ... (i−1)(i+1) ... (m−1)
r 3 r 4 ... ... ... rm
}
m− 2
.
Hence,
sgn
{
12 3 4··· m
imr 3 r 4 ··· rm
}
m
=(−1)
q
sgn
{
1234 ··· ··· ··· (m−1) m
im 12 ··· (i−1)(i+1) ··· (m−2) (m−1)
}
m
=(−1)
q+m
sgn
{
1234 ··· ··· ··· (m−1) m
i 123 ··· (i−1)(i+1) ··· (m−1) m
}
m
=(−1)
q+m+i− 1
sgn
{
1234 ··· m
1234 ··· m
}
m
=(−1)
q+m+i− 1
=(−1)
m+i− 1
sgn
{
12 ··· (i−1)(i+1) ··· (m−1)
r 3 r 4 ··· ··· ··· rm
}
m− 2