A.4 Appell Polynomials 315TABLE A.1. Particular Appell Polynomials and Their Generating Functionsαr G(t)=∑∞
r=0αrt
rr!
φm(x)=∑mr=0(
mr)
αrxm−r1 δr 1 xm21 e
t
(1 +x)
m3 rte
t
m(1 +x)
m− 141
r+1et− 1
t(1+x)m+1−xm+1
m+15(−1)r
r!
J 0 (2√
t) (Bessel) xm
Lm(
1
x)
(Laguerre)6α 2 r =(−1)r
(2r)!2
2 r
r!α 2 r+1=0}
e−t^2
2−m
Hm(x) (Hermite)7t
et− 1
Bm(x) (Bernoulli)8
2
et+1
Em(x) (Euler)Note:Further examples are given by Carlson.
The first four polynomials areφ 0 (x)=α 0 ,φ 1 (x)=α 0 x+α 1 ,φ 2 (x)=α 0 x2
+2α 1 x+α 2 ,φ 3 (x)=α 0 x3
+3α 1 x2
+3α 2 x+α 3. (A.4.7)Particular cases of these polynomials and their generating functions are
given in Table 1. When expressed in matrix form, equations (A.4.7) become
φ 0 (x)φ 1 (x)φ 2 (x)φ 3 (x)···
=
1
x 1x2
2 x 1x3
3 x2
3 x 1................
α 0α 1α 2α 3···