Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
A.4 Appell Polynomials 315

TABLE A.1. Particular Appell Polynomials and Their Generating Functions

αr G(t)=

∑∞

r=0

αrt
r

r!
φm(x)=

∑m

r=0

(

m

r

)

αrx

m−r

1 δr 1 x

m

21 e
t
(1 +x)
m

3 rte
t
m(1 +x)
m− 1

4

1
r+1

et− 1
t

(1+x)m+1−xm+1
m+1

5

(−1)r
r!
J 0 (2


t) (Bessel) x

m
Lm

(

1
x

)

(Laguerre)

6

α 2 r =

(−1)

r
(2r)!

2
2 r
r!

α 2 r+1=0

}

e

−t^2
2

−m
Hm(x) (Hermite)

7

t
et− 1
Bm(x) (Bernoulli)

8
2
et+1
Em(x) (Euler)

Note:Further examples are given by Carlson.


The first four polynomials are

φ 0 (x)=α 0 ,

φ 1 (x)=α 0 x+α 1 ,

φ 2 (x)=α 0 x

2
+2α 1 x+α 2 ,

φ 3 (x)=α 0 x

3
+3α 1 x

2
+3α 2 x+α 3. (A.4.7)

Particular cases of these polynomials and their generating functions are


given in Table 1. When expressed in matrix form, equations (A.4.7) become







φ 0 (x)

φ 1 (x)

φ 2 (x)

φ 3 (x)

···






=






1

x 1

x

2
2 x 1

x

3
3 x

2
3 x 1

................











α 0

α 1

α 2

α 3

···






. (A.4.8)
Free download pdf