A.4 Appell Polynomials 315
TABLE A.1. Particular Appell Polynomials and Their Generating Functions
αr G(t)=
∑∞
r=0
αrt
r
r!
φm(x)=
∑m
r=0
(
m
r
)
αrx
m−r
1 δr 1 x
m
21 e
t
(1 +x)
m
3 rte
t
m(1 +x)
m− 1
4
1
r+1
et− 1
t
(1+x)m+1−xm+1
m+1
5
(−1)r
r!
J 0 (2
√
t) (Bessel) x
m
Lm
(
1
x
)
(Laguerre)
6
α 2 r =
(−1)
r
(2r)!
2
2 r
r!
α 2 r+1=0
}
e
−t^2
2
−m
Hm(x) (Hermite)
7
t
et− 1
Bm(x) (Bernoulli)
8
2
et+1
Em(x) (Euler)
Note:Further examples are given by Carlson.
The first four polynomials are
φ 0 (x)=α 0 ,
φ 1 (x)=α 0 x+α 1 ,
φ 2 (x)=α 0 x
2
+2α 1 x+α 2 ,
φ 3 (x)=α 0 x
3
+3α 1 x
2
+3α 2 x+α 3. (A.4.7)
Particular cases of these polynomials and their generating functions are
given in Table 1. When expressed in matrix form, equations (A.4.7) become
φ 0 (x)
φ 1 (x)
φ 2 (x)
φ 3 (x)
···
=
1
x 1
x
2
2 x 1
x
3
3 x
2
3 x 1
................
α 0
α 1
α 2
α 3
···