322 Appendix
Differential equation.
xL′′
n(x)+(1−x)L′
n(x)+nLn(x)=0;Appell relation.If
φn(x)=xn
Ln(
1
x)
,
then
φ′
n
(x)=nφn− 1 (x).φn(x) is the Laguerre polynomial with its coefficients arranged in reverse
order.
Hermite PolynomialHn(x)
Definition.
Hn(x)=n!N
∑r=0(−1)
r
(2x)n− 2 rr!(n− 2 r)!,N=
[
1
2n]
.
Rodrigues formula.
Hn(x)=(−1)n
ex
2
Dn(
e−x2 )
,D=
ddx;
Generating function relation.
e2 xt−t
2
=∞
∑n=0Hn(x)tnn!;
Recurrence relation.
Hn+1(x)− 2 xHn(x)+2nHn− 1 (x)=0;Differential equation.
H
′′
n
(x)− 2 xH′
n
(x)+2nHn(x)=0;Appell relation.
H
′
n
(x)=2nHn− 1 (x).Legendre PolynomialsPn(x)
Definition.
Pn(x)=1
2
nN
∑r=0(−1)
r
(2n− 2 r)!xn− 2 rr!(n−r)! (n− 2 r)!,N=
[
1
2
n