Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

322 Appendix


Differential equation.


xL

′′
n(x)+(1−x)L


n(x)+nLn(x)=0;

Appell relation.If


φn(x)=x

n
Ln

(

1

x

)

,

then


φ


n
(x)=nφn− 1 (x).

φn(x) is the Laguerre polynomial with its coefficients arranged in reverse


order.


Hermite PolynomialHn(x)


Definition.


Hn(x)=n!

N

r=0

(−1)

r
(2x)

n− 2 r

r!(n− 2 r)!

,N=

[

1
2

n

]

.

Rodrigues formula.


Hn(x)=(−1)

n
e

x
2
D

n

(

e

−x

2 )

,D=

d

dx

;

Generating function relation.


e

2 xt−t
2
=



n=0

Hn(x)t

n

n!

;

Recurrence relation.


Hn+1(x)− 2 xHn(x)+2nHn− 1 (x)=0;

Differential equation.


H

′′
n
(x)− 2 xH


n
(x)+2nHn(x)=0;

Appell relation.


H


n
(x)=2nHn− 1 (x).

Legendre PolynomialsPn(x)


Definition.


Pn(x)=

1

2

n

N

r=0

(−1)

r
(2n− 2 r)!x

n− 2 r

r!(n−r)! (n− 2 r)!

,N=

[

1
2
n

]

.
Free download pdf