322 Appendix
Differential equation.
xL
′′
n(x)+(1−x)L
′
n(x)+nLn(x)=0;
Appell relation.If
φn(x)=x
n
Ln
(
1
x
)
,
then
φ
′
n
(x)=nφn− 1 (x).
φn(x) is the Laguerre polynomial with its coefficients arranged in reverse
order.
Hermite PolynomialHn(x)
Definition.
Hn(x)=n!
N
∑
r=0
(−1)
r
(2x)
n− 2 r
r!(n− 2 r)!
,N=
[
1
2
n
]
.
Rodrigues formula.
Hn(x)=(−1)
n
e
x
2
D
n
(
e
−x
2 )
,D=
d
dx
;
Generating function relation.
e
2 xt−t
2
=
∞
∑
n=0
Hn(x)t
n
n!
;
Recurrence relation.
Hn+1(x)− 2 xHn(x)+2nHn− 1 (x)=0;
Differential equation.
H
′′
n
(x)− 2 xH
′
n
(x)+2nHn(x)=0;
Appell relation.
H
′
n
(x)=2nHn− 1 (x).
Legendre PolynomialsPn(x)
Definition.
Pn(x)=
1
2
n
N
∑
r=0
(−1)
r
(2n− 2 r)!x
n− 2 r
r!(n−r)! (n− 2 r)!
,N=
[
1
2
n