332 Appendix
Illustration.The function
f=Ax 0 x 2 x 4 x 6 +Bx 0 x 2 x
2
3
x 5x 1+
Cx
2
0
x 1 x
5
3
+Dx
8
2Ex3
0 x^4 +Fx4
1(A.9.4)
is homogeneous of degree 4 in its variables and homogeneous of degree 12
in the suffixes of its variables. Hence,
6
∑r=0xr∂f∂xr=4f,6
∑r=1rxr∂f∂xr=12f.A.10 Formulas Related to the Function
(x+
√
1+x
2
)
2 nDefine functionsλnrandμnras follows. Ifnis a positive integer,
(x+√
1+x
2
)2 n
=n
∑r=0λnrx2 r
+√
1+x
2n
∑r=1μnrx2 r− 1
, (A.10.1)where
λnr=nn+r(
n+r2 r)
2
2 r
, (A.10.2)μnr=rλnrn. (A.10.3)
Define the functionνias follows:
(1 +z)− 1 / 2
=∞
∑i=0νizi. (A.10.4)
Then
νi=(−1)
i2
2 i(
2 ii)
=P 2 i(0),ν 0 =1, (A.10.5)wherePn(x) is the Legendre polynomial.
Theorem A.7.
n
∑j=1λn− 1 ,j− 1 νi+j− 2 =δin2
2(n−1), 1 ≤i≤n.