334 Appendix
λnr=nn+r(
n+r2 r)
, 1 ≤r≤n,λn 0 =1,n≥0;μnr=2 rλnrn, 1 ≤r≤n,μn 0 =0,n≥ 0. (A.10.8)Changing the sign ofxin (A.10.6),
(x−√
1+x
2
)2 n
=gn−hn√
1+x
2. (A.10.9)
Hence,
gn=1
2{
(x+√
1+x
2
)2 n
+(x−√
1+x
2
)2 n}
,
hn=1
2{
(x+√
1+x
2
)2 n
−(x−√
1+x
2
)2 n}
(
√
1+x
2
)− 1
(A.10.10).These functions satisfy the recurrence relations
gn+1=(1+2x2
)gn+2x(1 +x2
)hn,hn+1=(1+2x2
)hn+2xgn. (A.10.11)Let
fn=1
2{
(x+√
1+x
2
)n
+(x−√
1+x
2
)n}
. (A.10.12)
Lemmas.
a.f 2 n=gnb.f 2 n+1=
gn+1−gn2 x.
Proof. The proof of (a) is trivial. To prove (b), note that
f 2 n+1=
1
2{
(x+√
1+x
2
)(gn+hn√
1+x
2
)+(x−√
1+x
2
)(gn−hn√
1+x
2
)}
=xgn+(1+x2
)hn. (A.10.13)The result is obtained by eliminatinghnfrom the first line of (A.10.11).
In the next theorem, ∆ is the finite-difference operator (Appendix A.8).Theorem A.8.
a.gm+n+gm−n=2gmgn,b.∆(gm+n− 1 +gm−n− 1 )=2gn∆gm− 1 ,
c. 2 x2
(gm+n− 1 −gm−n)=∆gm− 1 ∆gn− 1 ,d.∆(gm+n− 1 −gm−n)=2gm∆gn− 1 ,
e. gm+n+1+gm−n= 2(1 +x2
)(gm+xhm)(gn+xhn),f.∆(gm−n+gm−n)=4x(1 +x2
)hm(gn−xhn),g.gm+n−gm−n= 2(1 +x2
)hmhn,h.∆(gm+n− 1 −gm−n− 1 )=4x(1 +x
2
)hn(gm−xhm).