A.12 B ̈acklund Transformations 339
∇·
(
∇ψ
φ
)
=
1
φ^2
(φ∇
2
ψ−∇φ·∇ψ), (A.12.10)
∇·
(
∇ψ
φ
2
)
=
1
φ
3
(φ∇
2
ψ− 2 ∇φ·∇ψ), (A.12.11)
∇
2
(logφ)=
1
φ
2
[φ∇
2
φ−(∇φ)
2
], (A.12.12)
∇
2
(logρ)=0. (A.12.13)
Applying (A.12.12) and (A.12.11), the coupled equations (A.12.2) and
(A.12.3) become
φ
2
∇
2
(logφ)+(∇ψ)
2
=0, (A.12.14)
∇·
(
∇ψ
φ
2
)
=0. (A.12.15)
Transformationβ(Ehlers)
If the pairP(φ, ψ) is a solution of (A.12.4) and (A.12.5), andφ
′
andψ
′
are
functions which satisfy the relations
a.φ
′
=
ρ
φ
,
b.
∂ψ
′
∂ρ
=−
ωρ
φ
2
∂ψ
∂z
,
c.
∂ψ
′
∂z
=
ωρ
φ
2
∂ψ
∂ρ
,(ω
2
=−1),
then the pairP
′
(φ
′
,ψ
′
) is also a solution.
Proof. Applying (A.12.6) and (A.12.7) to (A.12.15),
∇·
(
1
φ
2
∂ψ
∂ρ
,
1
φ
2
∂ψ
∂z
)
=0,
∂
∂ρ
(
ρ
φ
2
∂ψ
∂ρ
)
+
∂
∂z
(
ρ
φ
2
∂ψ
∂z
)
=0,
which is satisfied by (b) and (c). Eliminatingψfrom (b) and (c),
∂
∂ρ
(
φ
2
ρ
∂ψ
′
∂ρ
)
+
∂
∂z
(
φ
2
ρ
∂ψ
′
∂z
)
=0,
∂
2
ψ
′
∂ρ
2
−
1
ρ
∂ψ
′
∂ρ
+
∂
2
ψ
′
∂z
2
=−
2
φ
(
∂φ
∂ρ
∂ψ
′
∂ρ
+
∂φ
∂z
∂ψ
′
∂z
)
.
Hence, referring to (A.12.8) and (a),
∇
2
ψ
′
=
2 φ
ρ
[(
1
φ
−
ρ
φ
2
∂φ
∂ρ
)
∂ψ
′
∂ρ
−
ρ
φ
2
∂φ
∂z
∂ψ
′
∂z
]
=
2 φ
ρ
[
∂
∂ρ
(
ρ
φ
)
∂ψ
′
∂ρ
+
∂
∂z
(
ρ
φ
)
∂ψ
′
∂z