Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

344 Bibliography


T.H. Andres, W.D. Hoskins, R.G. Stanton, The determinant of a class of skew-


symmetric Toeplitz matrices.Linear. Alg. Applic. 14 (1976), 179–186. [MR

58 (1979), 5713; Zbl 416 (1980), 15005.]

G.E. Andrews, W.H. Burge, Determinantal identities. Pacific J. Math. 158


(1993), 1–14.

J.W. Archbold,Algebra, 4th edition, Pitman, London, 1970.


N. Asano, Y. Kato, Fredholm determinant solution for the inverse scattering


transform of theN×N Zakharov-Shabat equation.Prog. Theor. Phys. 83

(1990), 1090–1107. [MR 91k: 34133.]

N.B. Backhouse, A.G. Fellouris, On the superdeterminant function for superma-


trices.J. Phys. A 17 (1984), 1389–1395. [MR 86c: 58014.]

G.A. Baker, P.R. Graves-Morris, Pad ́e Approximants, Parts 1, 2.Encyclopedia of


Mathematics and Its Applications, Vols. 13 and 14, Addison-Wesley, Reading,

MA, 1981. [MR 83a: 41009a, b.]

M. Barnebei, A. Brini, Symmetrized skew-determinants. Commun. Alg. 15


(1987), 1455–1468. [MR 89a: 20010.]

W.W. Barrett, C.R. Johnson, Determinantal formulae for matrices with sparse


inverses.Linear Alg. Applic. 56 (1984), 73–88. [Zbl 523 (1984), 15008.]

E. Barton, Multiplication of determinants.Math. Gaz. 47 (1963), 54–55.


E. Basor, Asymptotic formulas for Toeplitz determinants.Trans. Am. Math. Soc.


239 (1978), 33–65. [MR 58 (1979), 12484.]

E.L. Basor, A localization theorem for Toeplitz determinants.Indiana Univ.


Math. J. 28 (1979), 975–983. [MR 81e: 47029.]

E. Basor, J.W. Helton, A new proof of the Szeg ̈o limit theorem and new results for


Toeplitz operators with discontinuous symbol,J. Operator Theory 3 (1980),

23–39. [MR 81m: 47042.]

E. Basor, H. Widom, Toeplitz and Wiener-Hopf determinants with piecewise


continuous symbols.J. Funct. Anal. 50 (1983), 387–413. [MR 85d: 47026.]

W. Bauhardt, C. P ̈oppe, The Fredholm determinant method for discrete inte-


grable evolution equations.Lett. Math. Phys. 13 (1987), 167–178. [MR 88g:

35165.]

M Bautz, Uber (0,1)-determinanten mit grossen absolutwerten.Wiss. Z. Tech.


Hochsch. Ilmenau 27 (1981), 39–55. [MR 82m: 15010; Zbl 481 (1982), 15008.]

G. Baxter, P. Schmidt, Determinants of a certain class of non-Hermitian Toeplitz


matrices.Math. Scand. 9 (1961), 122–128. [MR23A(1962), 3949.]

N. Bebiano, J.K. Merikoski, J. da Providencia, On a conjecture of G.N. de Oliveira


on determinants.Linear Multilinear Alg. 20 (1987), 167–170. [MR 88b: 15005.]

E.F. Bechenbach, R. Bellman, On the positivity of circulant and skew-circulant


determinants. General Inequalities.Proc. First Internat. Conf. Math. Res.

Inst. Oberwalfach 1976, Birkh ̈auser, Bessel, 1978, Vol. 1, pp. 39–48. [MR 58

(1979), 16715.]

E.F. Beckenbach, W. Seidel, O. Szasz, Recurrent determinants of Legendre and


ultaspherical polynomials.Duke Math. J. 18 (1951), 1–10. [MR 12 (1951),

702.]
Free download pdf