Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
Bibliography 349

L. Comtet,Advanced Combinatorics, Reidel, Dordrecht, 1974.


P.C. Consul, Some factorable determinants.Fibonnacci Quart. 14 (1976), 171–



  1. [MR 53 (1977), 5626.]


C.M. Cordes and D.P. Roselle, Generalized frieze patterns.Duke Math. J. 39


(1972), 637–648. [MR 47 (1974), 3209.]

A. Corduneanu, Natural generalization of Vandermonde determinants (Roma-


nian).Gaz. Mat. Perfect. Metod. Metodol. Nat. Inf. 11 (1990), 31–34. [Zbl

722 (1991), 15008.]

H. Cornille, Differential equations satisfied by Fredholm determinants and ap-


plication to the inversion formalism for parameter dependent potentials.J.

Math. Phys. 17 (1976), 2143–2157. [PA 80 (1977), 22437.]

H. Cornille, Generalization of the inversion equations and application to nonlinear


partial differential equations. I.J. Math. Phys. 18 (1977), 1855–1869. [PA 81

(1978), 8223.]

C.M. Cosgrove, New family of exact stationary axisymmetric gravitational fields


generalizing the Tomimatsu–Sato solutions.J. Phys. A 10 (1977), 1481–1524.

[MR 58 (1979), 20168.]

T.M. Cover, J.A. Thomas, Determinant inequalities via information theory.SIAM


J. Matrix Anal. Applic. 9 (1988), 384–392. [MR 89k: 15028.]

W.B. Craggs, The Pad ́e table and its relations to certain algorithms of numerical


analysis.SIAM Rev. 14 (1972), 1–62.

T. Crilly, Half-determinants: An historical note [Pfaffians].Math. Gaz. 66 (1982),


316.

T.W. Cusick, Identities involving powers of persymmetric determinants.Proc.


Camb. Phil. Soc. 65 (1969), 371–376. [MR 38 (1969), 5802.]

P. Dale, Axisymmetric gravitational fields: A nonlinear differential equation that


admits a series of exact eigenfunction solutions.Proc. Roy. Soc. London A

362 (1978) 463–468. [MR 80b: 83011.]

P. Dale, Functional determinants containing Vein’s numbers. Tech. Rep. TR


91001, Dept. Comp. Sci. & Appl. Math., Aston University, Birmingham, U.K,

1991.

P. Dale, P.R. Vein, Determinantal identities applicable to the solution of the


Benjamin–Ono and Kadomtsev–Petviashvili equations. Tech. Rep. TR 90004,

Dept. Comp. Sci. & Appl. Math., Aston University, Birmingham, U.K, 1990.

M.K. Das, On certain determinants for the classical polynomials.J. Annamalai


Univ. Part B. Sci. 26 (1965), 127-135. [MR 32 (1966), 1385.]

M.K. Das, On some determinants whose elements are orthogonal polynomials.


Math. Japan. 11 (1966), 19–25. [MR 34 (1967), 2965.]

M.K. Das, Determinants related to the generalized Laguerre polynomials.J.


Natur. Sci. Math. 9 (1969), 67–70. [Zbl 186 (1970), 105.]

K.M. Day, Toeplitz matrices generated by a Laurent series expansion of an arbi-


trary rational function.Trans. Am. Math.Soc. 206 (1975), 224–245. [MR 52

(1976), 708; Zbl 324 (1976), 47016.]

H. Dette, New identities for orthogonal polynomials on a compact interval.J.


Math. Anal. Applic. 179 (1993), 547–573.
Free download pdf