Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

352 Bibliography


J.S. Frame, Factors of the binomial circulant determinant.Fibonacci Quart. 18


(1980), 9–23. [Zbl 432 (1981), 10005.]

N.C. Freeman, Soliton solutions of non-linear evolution equations,IMA J. Appl.


Math. 32 (1984), 125–145. [Zbl 542 (1985), 35079.]

N.C. Freeman, J.J.C. Nimmo, Soliton solutions of the Korteweg–de Vries and


the Kadomtsev–Petviashvili equations: The Wronskian technique.Proc. Roy.

Soc. London 389 (1983), 319–329.Sci. Abstr. A 86 (1983), 117002. [MR 85f:

35175; Zbl 588 (1986), 35077.]

N.C. Freeman, C.R. Wilson, J.J.C. Nimmo, Two-component KP hierarchy and


the classical Boussinesq equation.J. Phys. A Math. Gen. 23 (1990), 4793–


  1. [PA 94 (1991), 20961.]


M.G. Frost, A. Sackfield, Polynomials of the form Fas determinants.J. Inst.


Math. Applic. 16 (1975), 389–392. [MR 53 (1977), 13670.]

B. Fuglede, R.V. Kadison, Determinant theory in finite factors.Ann. Math. 55


(1952), 520–530. [MR 13 (1952), 255; 14 (1953), 660.]

S Fujii, F. Kako, N. Mugibayashi, Inverse method applied to the solution of


nonlinear network equations describing a Volterra system.J. Phys. Soc. Japan

42 (1977), 335–340.

C.M. Fulton, Product of determinants by induction.Am. Math. Monthly 61


(1954), 344–345.

R.E. Gamboa-Savari, M.A. Muschietti, J.E. Solomin, On perturbation theory for


regularized determinants of differential operators.Commun. Math. Phys. 89

(1983), 363–373. [MR 85i: 81046.]

F.R. Gantmacher,The Theory of Matrices, 2 vols., Chelsea, New York, 1960.


M. Gasca, A. Lopez-Carmona, V. Ramirez, A generalized Sylvester’s identity


on determinants and its application to interpolation problems. Multivariate

Approx. Theory II, Proc. Conf. Oberwolfach 1982, ISNM 61, 171–184. [Zbl

496 (1983), 41002; MR 86h: 15006.]

A.G. Gasparjan, Application of multi-dimensional matrices to the investigation of


polynomials (Russian).Akad. Nauk. Armjan. SSR Dokl. 70 (1980), 133–141.

[MR 82c: 15035.]

A.S. Gasparyan, An analogue of the Binet–Cauchy formula for multidimensional


matrices.Soviet Math. Dokl. 28 (1983), 605–610. [Zbl 554 (1985), 15001.]

G. Gasper, On two conjectures of Askey concerning normalized Hankel determi-


nants for the classical polynomials.SIAM J. Math. Anal.[Zbl 229 (1972),

33016.]

I.M. Gelfand, M.M. Kapranov, A.V. Zelevinsky, Hyperdeterminants.Adv. Math.


96 (1992), 226–263. [Zbl 774 (1993), 15002.]

B. Germano, P.E. Ricci, General systems of orthogonal functions (Italian, English


summary).Rend. Mat. 3 (1983), 427–445. [MR 85g: 42025.]

J.S. Geronimo, Szeg ̈o’s theorem for Hankel determinants.J. Math. Phys. 20


(1979), 484–491. [Zbl 432 (1981), 33008.]

J. Geronimus, On some persymmetric determinants.Proc. Roy. Soc. Edin. 50


(1929/1930), 304–309.
Free download pdf