Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

356 Bibliography


E. In ̈on ̈ u, Orthogonality of a set of polynomials encountered in neutron-transport


and radiative-transfer problems.J. Math. Phys. 11 (1970), 568–577.

A. Inselberg, On determinants of Toeplitz–Hessenberg matrices arising in power


series.J. Math. Anal. Applic. 63 (1978), 347–353. [MR 58 (1979), 718.]

D.V. Ionescu, Une identit ́e importante et la d ́ecomposition d’une forme bilin ́eaire


en une somme de produits.Gaz. Mat. Fiz.A7(1955), 303–312. [MR 17

(1956), 229.]

I.S. Iohvidov, Hankel and Toeplitz Matrices and Forms. Algebraic Theory,


Birkh ̈auser, Boston, 1982. [MR 83k: 15021. [MR 51 (1976), 11172.]

A.G. Izergin, D.A. Coker, V.E. Korepin, Determinantal formula for the six-vertex


model.J. Phys. A: Math. Gen. 25 (1992), 4315–4334. [PA (1992), 127496.]

P.N. Izvercianu, Appell functions ofn−1 real arguments.Bul. Sti. Tehn. Inst.


Politehn., Timisoara 13 (1968), 13–19. [Zbl 217 (1972), 111.]

E. Jacobsthal,Uber eine determinante. ̈ Norske Vid. Selsk. Forh. Trondheim 23


(1951), 127–129. [MR 13 (1952), 98.]

A.A. Jagers, Solution of Problem E 2769 [1979, 307] proposed by J.W. Burgmeier


[A determinant involving derivatives].Am. Math. Monthly 87 (1980), 490.

A.A. Jagers, Solution of Problem 82-8, proposed by N.J. Boynton. [Zeros of a


determinant].SIAM Rev. 25 (1983), 271–273.

D.V. Jaiswal, On determinants involving generalized Fibonacci numbers.Fi-


bonacci Quart. 7 (1969), 319–330. [Zbl 191 (1970), 45.]

D.G. James, On the automorphisms of det(xij).Math. Chron. 9 (1980), 35–40.


[MR 81m: 10044.]

G.D. James, G.E. Murphy, The determinant of the Gram matrix for a Specht


module.J. Alg. 59 (1979), 222–235. [MR 82j: 20025.]

C.R. Johnson, W.W. Barrett, Determinantal inequalities for positive definite


matrices.Discrete Math. 119 (1993), 97–106.

V.N. Joshi, A determinant for rectangular matrices.Bull. Austral. Math. Soc. 21


(1980), 137–146. [MR 81k: 15005; Zbl 421 (1980), 15007.]

T. Jozefiak, P. Pragacz, A determinantal formula for skewQ-functions.J. Lond.


Math. Soc. 43 (1991), 76–90. [MR 92d: 05175.]

D.G. Kabe, Solution of Problem 5312 [1965, 795] proposed by D.S. Mitrinovic [A


Vandermonde operator].Am. Math. Monthly 73 (1966), 789.

T. Kaczorek, Extension of the method of continuants forn-order linear difference


equations with variable coefficients.Bull. Polish Acad. Sci. Technol. Sci. 33

(1985), 395–400. [MR 89b: 39006.]

K. Kajiwara, J. Satsuma,q-difference version of the two-dimensional Toda lattice


equation.J. Phys. Soc. Japan 60 (1991), 3986–3989. [PA (1992), 39224.]

K. Kajiwara, Y. Ohta, J. Satsuma, B. Grammaticos, Casorati determinant solu-


tions for the discrete Painlev ́e II equation.J. Phys. A: Math. Gen. 27 (1994),

915–922.

K. Kajiwara, Y. Ohta, J. Satsuma, Cesorati determinant solutions for the discrete


Painlev ́e III equation.J. Math. Phys. 36 (1995), 4162–4174. [MR 97j: 39012.]
Free download pdf