3.3 The Laplace Expansion 27Whenr=2,
An=∑
Nir,jsAir,js, summed overi,rorj, s,=
∑
∣
∣
∣
∣
aij aisarj ars∣
∣
∣
∣
Air,js.3.3.2 A Classical Proof
The following proof of the Laplace expansion formula given in (3.3.4) is
independent of Grassmann algebra.
LetA=|aij|n.Then referring to the partial derivative formulas in Section 3.2.3,
Ai
1 j 1=
∂A
∂ai 1 j 1(3.3.5)
Ai 1 i 2 ;j 1 j 2 =∂Ai
1 j 1∂ai 2 j 2,i 1 <i 2 andj 1 <j 2 ,=
∂
2
A∂ai 1 j 1 ∂ai 2 j 2. (3.3.6)
Continuing in this way,
Ai 1 i 2 ...ir;j 1 j 2 ...jr=∂
r
A∂ai 1 j 1 ∂ai 2 j 2 ···∂airjr, (3.3.7)
provided thati 1 <i 2 <···<irandj 1 <j 2 <···<jr.
Expanding A by elements from column j 1 and their cofactors andreferring to (3.3.5),
A=
n
∑i 1 =1ai
1 j 1
Ai
1 j 1=
n
∑i 1 =1ai 1 j 1∂A
∂ai 1 j 1=
n
∑i 2 =1ai
2 j 2∂A
∂ai
2 j 2(3.3.8)
∂A
∂ai 1 j 1=
n
∑i 2 =1ai 2 j 2∂
2
A∂ai 1 j 1 ∂ai 2 j 2=
n
∑i 2 =1ai
2 j 2
Ai
1 i 2 ;j 1 j 2
,i 1 <i 2 andj 1 <j 2. (3.3.9)