44 3. Intermediate Determinant Theory
Proof. Denote the left side of variant (A) byE. Then, applying the
Jacobi identity,
An+1E=An+1∣
∣
∣
∣
∣
A
(n)
ipA
(n+1)
i,n+1A
(n)
jpA
(n+1)
j,n+1∣
∣
∣
∣
∣
−An∣
∣
∣
∣
∣
A
(n+1)
ipA
(n+1)
i,n+1A
(n+1)
jpA
(n+1)
j,n+1∣
∣
∣
∣
∣
=A
(n+1)
i,n+1
Fj−A(n+1)
j,n+1
Fi, (3.6.13)where
Fi=AnA(n+1)
ip
−An+1A(n)
ip=
[∣
∣
∣
∣
∣
A
(n+1)
ip A(n+1)
i,n+1A
(n+1)
n+1,pA
(n+1)
n+1,n+1∣
∣
∣
∣
∣
−An+1A(n)
ip]
+A
(n+1)
i,n+1A(n+1)
n+1,p=A
(n+1)
i,n+1A
(n+1)
n+1,p.
Hence,
An+1E=[
A
(n+1)
i,n+1A
(n+1)
j,n+1−A
(n+1)
j,n+1A
(n+1)
i,n+1]
A
(n+1)
n+1,p=0. (3.6.14)The result follows and variant (B) is proved in a similar manner. Variant
(A) appears in Section 4.8.5 on Turanians and is applied in Section 6.5.1
on Toda equations.
The proof of (C) applies a particular case of (A) and the Jacobi identity.In (A), put (i, j, p)=(r, n, r):
∣
∣
∣
∣
∣A
(n)
rr A(n+1)
r,n+1A(n)
nr A(n+1)
n,n+1∣
∣
∣
∣
∣
−AnA(n+1)
rn;r,n+1=0. (A^1 )Denote the left side of (C) byP
AnP=An∣
∣
∣
∣
A
(n)
rr A(n+1)
rrA(n)
nr A(n+1)
nr∣
∣
∣
∣
−A
(n+1)
n+1,r∣
∣
∣
∣
∣
A
(n)
rr A(n+1)
r,n+1A(n)
nr A(n+1)
n,n+1∣ ∣ ∣ ∣ ∣ =
∣
∣
∣
∣
∣
∣
∣
A
(n)
rr A(n+1)
rr A(n+1)
r,n+1A
(n)
nr A(n+1)
nr A(n+1)
n,n+1- A
(n+1)
n+1,rA
(n+1)
n+1,n+1∣
∣
∣
∣
∣
∣
∣
=A
(n)
rr
Gn−A(n)
nr
Gr, (3.6.15)where
Gi=∣
∣
∣
∣
∣
A
(n+1)
irA
(n+1)
i,n+1A
(n+1)
n+1,r A(n+1)
n+1,n+1∣
∣
∣
∣
∣
=An+1A(n+1)
i,n+1;r,n+1. (3.6.16)Hence,
AnP=An+1[
A
(n)
rrA
(n+1)
n,n+1;r,n+1−A
(n)
nrA
(n+1)
r,n+1;r,n+1