Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

44 3. Intermediate Determinant Theory


Proof. Denote the left side of variant (A) byE. Then, applying the


Jacobi identity,


An+1E=An+1






A

(n)
ip

A

(n+1)
i,n+1

A

(n)
jp

A

(n+1)
j,n+1






−An






A

(n+1)
ip

A

(n+1)
i,n+1

A

(n+1)
jp

A

(n+1)
j,n+1






=A

(n+1)
i,n+1
Fj−A

(n+1)
j,n+1
Fi, (3.6.13)

where


Fi=AnA

(n+1)
ip
−An+1A

(n)
ip

=

[∣





A

(n+1)
ip A

(n+1)
i,n+1

A

(n+1)
n+1,p

A

(n+1)
n+1,n+1






−An+1A

(n)
ip

]

+A

(n+1)
i,n+1A

(n+1)
n+1,p

=A

(n+1)
i,n+1

A

(n+1)
n+1,p

.

Hence,


An+1E=

[

A

(n+1)
i,n+1

A

(n+1)
j,n+1

−A

(n+1)
j,n+1

A

(n+1)
i,n+1

]

A

(n+1)
n+1,p

=0. (3.6.14)

The result follows and variant (B) is proved in a similar manner. Variant


(A) appears in Section 4.8.5 on Turanians and is applied in Section 6.5.1


on Toda equations.


The proof of (C) applies a particular case of (A) and the Jacobi identity.

In (A), put (i, j, p)=(r, n, r):







A

(n)
rr A

(n+1)
r,n+1

A

(n)
nr A

(n+1)
n,n+1






−AnA

(n+1)
rn;r,n+1=0. (A^1 )

Denote the left side of (C) byP


AnP=An





A

(n)
rr A

(n+1)
rr

A

(n)
nr A

(n+1)
nr





−A

(n+1)
n+1,r






A

(n)
rr A

(n+1)
r,n+1

A

(n)
nr A

(n+1)
n,n+1

∣ ∣ ∣ ∣ ∣ =








A

(n)
rr A

(n+1)
rr A

(n+1)
r,n+1

A

(n)
nr A

(n+1)
nr A

(n+1)
n,n+1


  • A


(n+1)
n+1,r

A

(n+1)
n+1,n+1








=A

(n)
rr
Gn−A

(n)
nr
Gr, (3.6.15)

where


Gi=






A

(n+1)
ir

A

(n+1)
i,n+1

A

(n+1)
n+1,r A

(n+1)
n+1,n+1






=An+1A

(n+1)
i,n+1;r,n+1. (3.6.16)

Hence,


AnP=An+1

[

A

(n)
rr

A

(n+1)
n,n+1;r,n+1

−A

(n)
nr

A

(n+1)
r,n+1;r,n+1

]

.
Free download pdf