Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
3.6 The Jacobi Identity and Variants 45

ButA


(n+1)
i,n+1;j,n+1=A

(n)
ij. Hence,AnP= 0. The result follows. 

Three particular cases of (B) are required for the proof of the next

theorem.


Put (i, p, q)=(r, r, n), (n− 1 ,r,n), (n, r, n) in turn:





A

(n)
rr A

(n)
rn

A

(n+1)
n+1,r

A

(n+1)
n+1,n





−AnA

(n+1)
r,n+1;rn

=0, (B 1 )






A

(n)
n− 1 ,r

A

(n)
n− 1 ,n

A

(n+1)
n+1,r

A

(n+1)
n+1,n






−AnA

(n+1)
n− 1 ,n+1;rn

=0, (B 2 )





A

(n)
nr A

(n)
nn

A

(n+1)
n+1,r

A

(n+1)
n+1,n





−AnA

(n+1)
n,n+1;rn

=0. (B 3 )

Theorem 3.7.


∣ ∣ ∣ ∣ ∣ ∣ ∣
A

(n+1)
r,n+1;rn A

(n)
rr A

(n)
rn

A

(n+1)
n− 1 ,n+1;rn

A

(n)
n− 1 ,r

A

(n)
n− 1 ,n

A

(n+1)
n,n+1;rn A

(n)
nr A

(n)
nn

∣ ∣ ∣ ∣ ∣ ∣ ∣

=0.

Proof. Denote the determinant byQ. Then,


Q 11 =






A

(n)
n− 1 ,r A

(n)
n− 1 ,n

A

(n)
nr A

(n)
nn






=AnA

(n)
n− 1 ,n;rn

=AnA

(n−1)
n− 1 ,r

,

Q 21 =−AnA

(n−1)
rr

,

Q 31 =AnA

(n)
r,n−1;rn. (3.6.17)

Hence, expandingQby the elements in column 1 and applying (B 1 )–(B 3 ),


Q=An

[

A

(n+1)
r,n+1;rn

A

(n−1)
n− 1 ,r

−A

(n+1)
n− 1 ,n+1;rn

A

(n−1)
rr

+A

(n+1)
n,n+1;rn

A

(n)
r,n−1;rn

]

(3.6.18)

=A

(n−1)
n− 1 ,r





A

(n)
rr A

(n)
rn

A

(n+1)
n+1,r

A

(n+1)
n+1,n





−A

(n−1)
rr






A

(n)
n− 1 ,r A

(n)
n− 1 ,n

A

(n+1)
n+1,r

A

(n+1)
n+1,n






+A

(n)
r,n−1;rn





A

(n)
nr A

(n)
nn

A

(n+1)
n+1,r

A

(n+1)
n+1,n





=A

(n+1)
n+1,n

[

A

(n)
nrA

(n)
r,n−1;rn−





A

(n−1)
rr A

(n)
rr

A

(n−1)
n− 1 ,r A

(n)
n− 1 ,r





]

−A

(n+1)
n+1,r

[

An− 1 A

(n)
r,n−1;rn−





A

(n−1)
rr A

(n)
rn

A

(n−1)
n− 1 ,r A

(n)
n− 1 ,n





]

. (3.6.19)
Free download pdf