Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

46 3. Intermediate Determinant Theory


The proof is completed by applying (C) and (A 1 ) withn→n−1. Theorem


3.7 is applied in Section 6.6 on the Matsukidaira–Satsuma equations. 


Theorem 3.8.


A

(n+1)
n+1,r
Hn=A

(n+1)
n+1,n
Hr,

where


Hj=






A

(n−1)
rr A

(n+1)
rj

A

(n−1)
n− 1 ,r

A

(n+1)
n− 1 ,j






−A

(n+1)
nj A

(n)
r,n−1;rn.

Proof. Return to (3.6.18), multiply byAn+1/Anand apply the Jacobi


identity:


A

(n−1)
n− 1 ,r





A

(n+1)
rr A

(n+1)
rn

A

(n+1)
n+1,r

A

(n+1)
n+1,n





−A

(n−1)
rr






A

(n+1)
n− 1 ,r

A

(n+1)
n− 1 ,n

A

(n+1)
n+1,r A

(n+1)
n+1,n






+A

(n)
r,n−1;rn





A

(n+1)
nr A

(n+1)
nn

A

(n+1)
n+1,r

A

(n+1)
n+1,n





=0,

A

(n+1)
n+1,r

[

A

(n−1)
rr A

(n+1)
n− 1 ,n

−A

(n−1)
n− 1 ,r

A

(n+1)
rn −A

(n+1)
nn A

(n)
r,n−1;rn

]

= A

(n+1)
n+1,n

[

A

(n−1)
rr

A

(n+1)
n− 1 ,r

−A

(n+1)
rr

A

(n−1)
n− 1 ,r

−A

(n)
r,n−1;rn

A

(n+1)
nr

]

,

A

(n+1)
n+1,r

[∣




A

(n−1)
rr A

(n+1)
rn

A

(n−1)
n− 1 ,r A

(n+1)
n− 1 ,n





−A

(n+1)
nn A

(n)
r,n−1;rn

]

= A

(n+1)
n+1,n

[∣




A

(n−1)
rr A

(n+1)
rr

A

(n−1)
n− 1 ,r A

(n+1)
n− 1 ,r





−A

(n+1)
nr A

(n)
r,n−1;rn

]

The theorem follows. 


Exercise.Prove that
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣


A

(n)
i 1 j 1

A

(n)
j 1 j 2

... A

(n)
i 1 jr− 1

A

(n+1)
i 1 ,n+1

A

(n)
i 2 j 1

A

(n)
i 2 j 2

... A

(n)
i 2 jr− 1

A

(n+1)
i 2 ,n+1

A

(n)
irj 1

A

(n)
irj 2

... A

(n)
irjr− 1

A

(n+1)
ir,n+1

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ r

=A

r− 1
n A

(n+1)
i 1 i 2 ...ir;j 1 j 2 ...jr− 1 ,n+1.

Whenr= 2, this identity degenerates into Variant (A). Generalize Variant


(B) in a similar manner.


3.7 Bordered Determinants


3.7.1 Basic Formulas; The Cauchy Expansion


Let


An=|aij|n

=


∣C

1 C 2 C 3 ···Cn



n
Free download pdf