48 3. Intermediate Determinant Theory
Proof.
Bij=(−1)
i+j∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
a 11 a 12 ··· a 1 ,j− 1 a 1 ,j+1 ··· a 1 n x 1a 21 a 22 ··· a 2 ,j− 1 a 2 ,j+1 ··· a 2 n x 2..........................................................ai− 1 , 1 ai− 1 , 2 ··· ai− 1 ,j− 1 ai− 1 ,j+1 ··· ai− 1 ,n xi− 1ai+1,i ai+1, 2 ··· ai+1,j− 1 ai+1,j+1 ··· ai+1,n xi+1..........................................................an 1 an 2 ··· an,j− 1 an,j+1 ··· ann xny 1 y 2 ··· yj− 1 yj+1 ··· yn z∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ n.
The expansion is obtained by applying arguments toBijsimilar to thoseapplied toBin Theorem 3.9. Since the second cofactor is zero whenr=i
ors=jthe double sum contains (n−1)
2
nonzero terms, as expected. Itremains to prove thatBij=Eij.
Transfer the last row ofBijto theith position, which introduces the sign(−1)
n−i
and transfer the last column to thejth position, which introduces
the sign (−1)
n−j
. The result isEij, which completes the proof.
The Cauchy expansion of an arbitrary determinant focuses attention onone arbitrarily chosen elementaijand its cofactor.
Theorem 3.11. The Cauchy expansion
A=aijAij+n
∑r=1n
∑s=1aisarjAir,sj.First Proof.The expansion is essentially the same as that given in Theorem
3.10. TransformEijback toAby replacingzbyaij,xrbyarjandysby
ais. The theorem appears after applying the relation
Air,js=−Air,sj. (3.7.2)Second Proof.It follows from (3.2.3) thatn
∑r=1arjAir,sj=(1−δjs)Ais.Multiply byaisand sum overs:
n
∑r=1n
∑s=1aisarjAir,sj=n
∑s=1aisAis−n
∑s=1δjsaisAis=A−aijAij,which is equivalent to the stated result.
Theorem 3.12. Ifys=1, 1 ≤s≤n, andz=0, then
n
∑j=1Bij=0, 1 ≤i≤n.