Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

58 4. Particular Determinants


Exercises


1.Prove the reduction formula

A

(n)
ij

=A

(n−1)
ij

n− 1

r=1
r=i

(

xn−xr

xr−yn

)n− 1

s=1
s=j

(

ys−yn

xn−ys

)

.

Hence, or otherwise, prove that

A

ij
n=

1

xi−yj

f(yj)g(xi)

f

(xi)g

(yj)

,

where

f(t)=

n

r=1

(t−xr),

g(t)=

n

s=1

(t−ys).

2.Let

Vn=

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

f(x 1 )

f(x 2 )

[aij]n

.

.

.

.

.

.

f(xn)

11 ... ... 11

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

n+1

,

Wn=

∣ ∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ∣ ∣ ∣

f(x 1 )

f(x 2 )

[aij]n

.

.

.

.

.

.

f(xn)

− 1 − 1 ... ... − 11

∣ ∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ∣ ∣ ∣

n+1

,

where

aij=

(

1 −xiyj

xi−yj

)

f(xi),

f(x)=

n

i=1

(x−yi).

Show that

Vn=(−1)

n(n+1)/ 2
XnYn

n

i=1

(xi−1)(yi+1),
Free download pdf