60 4. Particular Determinants
where
qij=i
∑r=1U
(i)
ir
Pr(xj)=
i
∑r=1U
(i)
irr→i
∑s=1asrxs− 1
j
(asr=0, s>r)=
i
∑s=1xs− 1
ji
∑r=1asrU(i)
ir=Uii
∑s=1xs− 1
j δsi=Uixi− 1
jHence, referring to (4.1.8),
|qij|n=(
U 1 U 2 ···Un)|xi− 1
j|
=Un|U(i)
ij|nXn.The theorem follows from (4.1.7) and (4.1.9).
4.1.7 A Generalized Vandermondian............
Lemma.
∣
∣
∣
∣
∣
N
∑k=1ykxi+j− 2
k∣ ∣ ∣ ∣ ∣ n=
N
∑k 1 ...kn=1(
n
∏r=1ykr)(
n
∏s=2xs− 1
ks)
∣
∣
xi− 1
kj∣
∣
nProof. Denote the determinant on the left byAnand put
a(k)
ij
=ykxi+j− 2
kin the last identity in Property (g) in Section 2.3.1. Then,
An=N
∑k 1 ...kn=1∣
∣y
kjxi+j− 2
kj∣
∣
nNow remove the factoryk
j
x
j− 1
kj
from columnjof the determinant, 1≤j≤n. The lemma then appears and is applied in Section 6.10.4 on the Einstein
and Ernst equations.
4.1.8 Simple Vandermondian Identities
Lemmas.
a.Vn=Vn− 1n− 1
∏r=1(xn−xr),n> 1 ,V(x 1 )=1