Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

60 4. Particular Determinants


where


qij=

i

r=1

U

(i)
ir
Pr(xj)

=

i

r=1

U

(i)
ir

r→i

s=1

asrx

s− 1
j
(asr=0, s>r)

=

i

s=1

x

s− 1
j

i

r=1

asrU

(i)
ir

=Ui

i

s=1

x

s− 1
j δsi

=Uix

i− 1
j

Hence, referring to (4.1.8),


|qij|n=

(

U 1 U 2 ···Un)|x

i− 1
j

|

=Un|U

(i)
ij|nXn.

The theorem follows from (4.1.7) and (4.1.9). 


4.1.7 A Generalized Vandermondian............


Lemma.





N

k=1

ykx

i+j− 2
k

∣ ∣ ∣ ∣ ∣ n

=

N

k 1 ...kn=1

(

n

r=1

ykr

)(

n

s=2

x

s− 1
ks

)



x

i− 1
kj



n

Proof. Denote the determinant on the left byAnand put


a

(k)
ij
=ykx

i+j− 2
k

in the last identity in Property (g) in Section 2.3.1. Then,


An=

N

k 1 ...kn=1


∣y
kjx

i+j− 2
kj



n

Now remove the factoryk
j
x


j− 1
kj
from columnjof the determinant, 1≤j≤

n. The lemma then appears and is applied in Section 6.10.4 on the Einstein


and Ernst equations. 


4.1.8 Simple Vandermondian Identities


Lemmas.


a.Vn=Vn− 1

n− 1

r=1

(xn−xr),n> 1 ,V(x 1 )=1
Free download pdf