Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
4.1 Alternants 61

b.Vn=V(x 2 ,x 3 ,...,xn)


n

r=2

(xr−x 1 ).

c. V(xt,xt+1,...,xn)=V(xt+1,xt+2,...,xn)

n

r=t+1

(xr−xt).

d.V


(n)
1 n

=(−1)

n+1
V(x 2 ,x 3 ,...,xn)=

(−1)

n+1
Vn

∏n

r=2

(xr−x 1 )

.

e. V

(n)
in

=(−1)

n+i
V(x 1 ,...,xi− 1 ,xi+1,...,xn)

=

(−1)

n+i
Vn

i∏− 1

r=1

(xi−xr)

∏n

r=i+1

(xr−xi)

,i> 1

f.If{j 1 j 2 ···jn}is a permutation of{ 12 ...n}, then

V

(

xj 1 ,xj 2 ,...,xjn

)

= sgn

{

12 ··· n

j 1 j 2 ··· jn

}

V(x 1 ,x 2 ,...,xn).

The proofs of (a) and (b) follow from the difference–product formula

in Section 4.1.2 and are elementary. A proof of (c) can be constructed as


follows. In (b), putn=m−t+ 1, then putxr=yr+t− 1 ,r=1, 2 , 3 ,..., and


change the dummy variable in the product fromrtosusing the formula


s=r+t−1. The resut is (c) expressed in different symbols. Whent=1,


(c) reverts to (b). The proofs of (d) and (e) are elementary. The proof


of (f) follows from Property (c) in Section 2.3.1 and Appendix A.2 on


permutations and their signs.


Let the minors ofVnbe denoted byMij. Then,

Mi=Min=V(x 1 ,...,xi− 1 ,xi+1,...,xn),

Mn=Mnn=Vn− 1.

Theorems.


a.

m

r=1

Mr=

V(xm+1,xm+2,...,xn)V

m− 1
n

V(x 1 ,x 2 ,...,xm)

, 1 ≤m≤n− 1

b.


n

r=1

Mr=V

n− 2
n

c.

m

r=1

Mkr=

V(xk
m+1
,xk
m+2
,...,xk
n

)V

m− 1
n

V(xk 1 ,xk 2 ,...,xkm)

Proof. Use the method of induction to prove (a), which is clearly valid


whenm= 1. Assume it is valid whenm=s. Then, from Lemma (e) and

Free download pdf