4.1 Alternants 634.1.9 Further Vandermondian Identities..........
The notation
Nm={ 12 ···m},Jm={j 1 j 2 ···jm},Km={k 1 k 2 ···km},whereJmandKmare permutations ofNm, is used to simplify the following
lemmas.
Lemma 4.5.
V(x 1 ,x 2 ,...,xm)=Nm
∑Jmsgn{
NmJm} m
∑r=1xr− 1
jr.Proof. The proof follows from the definition of a determinant in
Section 1.2 withaij→x
j− 1
i.
Lemma 4.6.
V
(
xj
1
,xj
2
,...,xj
m)
= sgn{
NmJm}
V(x 1 ,x 2 ,...,xm).This is Lemma (f) in Section 4.1.8 expressed in the present notation withn→m.
Lemma 4.7.
Km
∑JmF
(
xj 1 ,xj 2 ,...,xjm)
=
{
NmJm}Nm
∑JmF
(
xj 1 ,xj 2 ,...,xjm)
.
In this lemma, the permutation symbol is used as a substitution operator.The number of terms on each side ism
2
.
Illustration.Putm=2,F(xj
1
,xj
2
)=xj
1
+x
2
j 2
and denote the left andright sides of the lemma byPandQrespectively. Then,
P=xk 1 +x2
k 1 +xk 2 +x2
k 2Q=
{
12
k 1 k 2}
(x 1 +x2
1 +x^2 +x2
2 )=P.
Theorem.
a.Nm
∑Jm(
m
∏r=1xr− 1
jr)
V
(
xj
1
,xj
2
,...,xj
m)
=[V(x 1 ,x 2 ,...,xm)]2
,b.
Km
∑Jm(
m
∏r=1xr− 1
jr)
V
(
xj
1
,xj
2
,...,xj
m)
=
[
V
(
xk
1
,xk
2
,...,xk
m