Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

70 4. Particular Determinants


In detail,


Bn=

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

− 1 • 11 ··· 11

− 1 − 1 • 1 ··· 11

− 1 − 1 − 1 • ··· 11

.................................

− 1 − 1 − 1 − 1 ··· − 1 •

− 1 − 1 − 1 − 1 ··· − 1 − 1

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ n

.

Lemma 4.13.


Bn=(−1)

n
.

Proof. Perform the column operation


C


2

=C 2 −C 1

and then expand the resulting determinant by elements from the newC 2.


The result is


Bn=−Bn− 1 =Bn− 2 =···=(−1)

n− 1
B 1.

ButB 1 =−1. The result follows. 


Lemma 4.14.


a.

2 n

k=1

(−1)

j+k+1
=0,

b.


i− 1

k=1

(−1)

j+k+1
=(−1)

j
δi,even,

c.

2 n

k=i

(−1)

j+k+1
=(−1)

j+1
δi,even,

where theδfunctions are defined in Appendix A.1. All three identities follow


from the elementary identity


q

k=p

(−1)

k
=(−1)

p
δq−p,even. 

Define the functionEijas follows:


Eij=




(−1)

i+j+1
,i<j

0 ,i=j

−(−1)

i+j+1
, i>j.

Lemma 4.15.


a.

2 n

k=1

Ejk=(−1)

j+1
,
Free download pdf