Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

72 4. Particular Determinants


Lemma 4.16.


En=δn,even.

Proof. Perform the column operation


C


n=Cn+C^1 ,

expand the result by elements from the newCn, and apply Lemma 4.13


En=(−1)

n− 1
Bn− 1 −En− 1

=1−En− 1

=1−(1−En− 2 )

=En− 2 =En− 4 =En− 6 ,etc.

Hence, ifnis even,


En=E 2 =1

and ifnis odd,


En=E 1 =0,

which proves the result. 


Lemma 4.17. The functionEijdefined in Lemma 4.15 is the cofactor of


the elementεijinE 2 n.


Proof. Let


λij=

2 n

k=1

εikEjk.

It is required to prove thatλij=δij.


λij=

i− 1

k=1

εikEjk+0+

2 n

k=i+1

εikEjk

=−

i− 1

k=1

Ejk+

2 n

k=i+1

Ejk

=

[

2 n

k=i


i− 1

k=1

]

Ejk−Eji.

Ifi<j,


λij=(−1)

j+1

[

δi,odd−δi,even+(−1)

i

]

=0.

Ifi>j,


λij=(−1)

j+1

[

δi,even−δi,odd−(−1)

i

]
Free download pdf