Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

80 4. Particular Determinants


ωris also a function ofn, but thenis suppressed to simplify the notation.


Thennumbers


1 ,ωr,ω

2
r,...,ω

n− 1
r (4.4.5)

are thenth roots of unity for any value ofr. Two different choices ofrgive


rise to the same set of roots but in a different order. It follows from the


third line in (4.4.4) that


n− 1

s=0

ω

s
r
=0, 0 ≤r≤n− 1. (4.4.6)

Theorem.


An=

n− 1

r=0

n

s=1

ω

s− 1
r as.

Proof. Let


zr=

n

s=1

ω

s− 1
r as

=a 1 +ωra 2 +ω

2
r
a 3 +···+ω

n− 1
r
an,ω

n
r

=1. (4.4.7)

Then,


ωrzr=an+ωra 1 +ω

2
ra^2 +···+ω

n− 1
r an−^1

ω

2
rzr=an−^1 +ωran+ω

2
ra^1 +···+ω

n− 1
r an−^2

............................................

ω

n− 1
r zr=a^2 +ωra^3 +ω

2
ra^4 +···+ω

n− 1
r a^1






. (4.4.8)

ExpressAnin column vector notation and perform a column operation:


An=


∣C

1 C 2 C 3 ···Cn



=


∣C′

1
C 2 C 3 ···Cn


∣,

where


C


1 =

n

j=1

ω

j− 1
r Cj

=

     

a 1

an

an− 1

.
.
.

a 2

     

+ωr

     

a 2

a 1

an
.
.
.

a 3

     


2
r

     

a 3

a 2

a 1
.
.
.

a 4

     

+···+ω

n− 1
r

     

an

an− 1

an− 2

.
.
.

a 1

     

=zrWr,

where


Wr=

[

1 ωrω

2
r
···ω

n− 1
r

]T

. (4.4.9)
Free download pdf